线性代数期中资料

王羽婕,李居洋,程远,王启源,李恩辉 2023年10月16日

钱学森书院学业辅导中心 Xi'an Jiaotong University

作品信息

- ▶ 标题:线性代数期中资料
- ▶ 作者:王羽婕,李居洋,程远,王启源,李恩辉
- ➤ 出品时间: 2023 年 10 月 16 日
- ➤ 总页数: 2

许可证说明

本作品采用**CC BY-NC-ND 4.0 协议**进行许可。使用者可以在给出作者署名及资料来源的前提下对本作品进行转载,但不得对本作品进行修改,亦不得基于本作品进行二次创作,不得将本作品运用于商业用途。

线性代数(前3章)的美

李居洋

October 13, 2023

目录 2

目录

1	<u>行列式</u> ·	2
2	矩阵	4
	2.1 矩阵乘法	4
	2.2 逆矩阵	5
	2.3 矩阵的秩	6
3	几何向量	6

前言

试着证明以下结论: |AB| = |A||B|, 可逆矩阵一定能够被分解为有限个初等矩阵的乘积, 初等变换不改变矩阵的秩。有没有发现, 其实不是那么好证明呢?

事实上,知道怎么证明并不意味着什么,我希望能够通过一个又一个证明和习题将线性代数的内容串起来,展现出知识的框架体系。

我个人在整理这篇笔记时,真是越整理越兴奋,深刻地感受到了线性 代数的美。我希望这篇笔记能够帮助同学们从繁杂的计算中抽离出来,一 起来感受线性代数世界的精彩。

重要的备注:

- 1. 本篇笔记对考试或许帮助没那么大,不过我相信花点时间梳理一下学的东西总是有好处的.
- 2. 本篇笔记中, 带*号的内容代表补充内容, 可以直接当结论记住。
- 3. 我是一个不细心的人,所以在本篇笔记中肯定有乱七八糟的错误,发现的同学请找我说一下,谢谢!

1 行列式

*问题1.

1 行列式 3

1. 从行列式的第二公理化定义(有没有感觉和消元的过程很像),推导行列式的第一公理化定义

2. 从行列式的第一公理化定义,推导行列式的表达式

注记.

本问题是补充内容,但是它是很多问题的基石。自然地理解了它之后, 行列式就变得亲切可爱了,我们也就能更自然地使用这个工具。

行列式的第二公理化定义是可以很自然地从求解线性方程组的过程中总结出来的,继而推出第一公理化定义,最后就能得到行列式的表达式了。(证明可参考https://zhuanlan.zhihu.com/p/76526424)

行列式很好地体现了数学中抽象的思想。求解线性方程组的问题本身就是从实际问题中抽象出来的,我们又把方程组抽象成了系数矩阵,继而仅通过系数矩阵研究解的存在性,最终得到了行列式(行列式的英文名叫determinant,意思就是行列式是否为零决定了解是否存在)。

行列式的引入有很多种方式,我个人感觉这是最自然的。另外,从几何的角度能很好地将行列式的各项性质展现出来。

行列式不是唯一一种将矩阵变换为一个数的方式,如果将行列式中每一项的 $(-1)^{\tau(j_1,j_2,\dots,j_n)}$ 去掉,那么同样可以得出一种变换方式,名叫永久式(permanent),也有它自己的意义(https://www.zhihu.com/question/444702003)。

*问题2. 了解什么是拉普拉斯展开(顺带复习什么是子式、余子式、代数余子式),并证明以下结论:

- 1. 按某一行/列的代数余子式展开是行拉普拉斯展开式的特例
- 2. 证明:

$$\begin{vmatrix} A_{m*m} & O \\ O & B_{n*n} \end{vmatrix} = \begin{vmatrix} A_{m*m} \end{vmatrix} * \begin{vmatrix} B_{n*n} \end{vmatrix}$$

注记. 在矩阵的秩一章中,子式的概念第一次在书中正式定义。但早在行列式第一章中,代数余子式的概念就已经出现了。通过了解拉普拉斯展开

2 矩阵 4

式的概念,相信你能将这些概念串起来。(可参考https://www.zhihu.com/question/66764738/answer/110

2 矩阵

2.1 矩阵乘法

问题3. 证明以下四种矩阵乘法的理解方式等价:

- 1. $C[i,j] = (A[i,:])^T B[:,j]$
- 2. $C[i,:] = \sum_{k=1}^{k=n} A[i,k]B[k,:]$ (将B理解为行向量的向量组)
- 3. $C[:,j] = \sum_{k=1}^{k=n} A[:,k]B[k,j]$ (将B理解为行向量的集向量组)
- 4. 先分块再乘(见书P61分块矩阵的乘法)

注: C[i,j]代表矩阵C第i行第j列的元素; C[i,:]代表第i行全体; C[:,j]代表第j列全体。

Moodle上面有一道矩阵乘法的题,大家可以按照这三种形式,写三种矩阵乘法的算法作为练习^_^

注记. 这个问题其实非常简单,把所有的记号理解了就行了。第二、三种理解方式可以很好地将初等矩阵看成行/列变换。例如对于矩阵

$$P = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

PA可以看作将矩阵A的第2、3行互换,BP可以看作将矩阵B的第2、3列互换。

这个用动画可能更清楚,可以参考Gilbert Strang讲这一节时的视频,或BV1ZG4y1a7RQ

*问题4. 利用行列式的第一公理化定义,证明:

$$|AB| = |A| |B|$$

2 矩阵 5

自然的推论:可逆矩阵A的行列式不为0

注记. 这里体现出了"等价的威力":通过行列式的第一公理化定义,我们就不需要繁琐地展开来计算。

2.2 逆矩阵

问题5. 证明: 若AB = I, 则BA = I

问题6. 有限个初等矩阵的积一定是可逆矩阵,可逆矩阵一定能表示为有限个初等矩阵的积。(书中定理2.4.3, P72)

注记.

此定理需要一个"桥梁",即可逆矩阵一定可以通有限次的初等变换变成单位矩阵(高斯消元法及前一问题的结论)(这个过程也能证明行列式为0的矩阵不可逆。书中P53则给出了若知道Cramer法则后的另一种证明,不过我觉得这个证法更好想)。

此时,我们已经有了不少可逆矩阵的等价定义:

- 1. 存在矩阵B, 使得AB = I
- 2. 存在矩阵B, 使得BA = I
- 3. 可以通过有限次初等变换变为单位矩阵的矩阵
- 4. 行列式不为零的矩阵
- * 任意行(列)向量不能被其它行(列)向量线性表出

每一个等价定义,都代表一种理解概念的方式,从合适的等价定义出发,可以大大简化解题的过程。我们在证明|AB| = |A||B|时,我们就已经见识过了"等价的威力"。

3 几何向量 6

问题7. 证明以下结论:

1. $AA^* = |A|I$ (书中P52,定理2.2.1) (推论: 若矩阵A可逆,则 $A^{-1} = \frac{A^*}{|A|}$)

2. 通过系数矩阵行列式判断根的个数,并证明Cramer法则

2.3 矩阵的秩

问题8. 证明等价矩阵有相同的秩(书上P70,定理2.5.1)

注记.

这个定理的重要性在于由于一切矩阵都可以通过有限次的初等变换变为秩标准形,故我们就得到了求秩的一种通法,这也可以看作是秩的定义。

*问题9. 证明秩的定义和以下定义等价:如果将矩阵看作一个向量组,那么矩阵的秩就是其所含的最大无关向量组中向量的个数。(书中P158 定义4.3.2)

注记.

个人感觉这个秩的定义更加自然,证明上一个问题也更加好证。不过 无所谓,总之我们现在又多了一个秩的等价定义了,是不是很高兴啊:-)

3 几何向量

问题10. 证明以下结论:

- 1. 点乘的定义式(即两向量长度的乘积乘以夹角的余弦值)和点乘的坐标表示等价
- 2. 若向量a垂直于向量b,则 $a \cdot b = 0$
- 3. 若 $A^T A = 0$,则A = 0(书上P50 (B)组第二题)

3 几何向量 7

注记.

这几个问题中,比较有难度的是第一个问题。当然,可以一股脑地全展开,但更优雅和本质的做法或许是用类似我们引出行列式的方法: 先证明此结论对(1,0)·(0,1)成立,再证明满足数乘、加法和分配律等,最后得出结论。(可以参考B站3B1B的线性代数中关于内积和叉乘的部分)

这样,理解点乘的方式就有三种:按定义理解,按坐标式理解和按几何意义理解。

问题11. 证明以下结论:

- 1. 叉乘的定义式(即两向量的长度乘以夹角的正弦值)和叉乘的坐标表示等价

注记.

与证明点积定义的等价性的方式类似,这个题也最好不要直接拆开。同时,可以利用二阶矩阵行列式的几何意义来简化过程。

线性代数辅导书题目精选

王羽婕

October 2023

1 行列式

例 1.6 计算 n 阶行列式 $D_n = |a_{ij}|$, 其中 $a_{ij} = |i-j|$,(i,j=1,2,3,...,n).

解:由 D_n 的定义知

$$\begin{vmatrix} 0 & 1 & 2 & \dots & n-2 & n-1 \\ 1 & 0 & 1 & \dots & n-3 & n-2 \\ 2 & 1 & 0 & \dots & n-4 & n-3 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ n-2 & n-3 & n-4 & \dots & 0 & 1 \\ n-1 & n-2 & n-3 & \dots & 1 & 0 \end{vmatrix}$$

先把第 n-1 行的 (-1) 倍加到 n 行,再把第 n-2 行的 (-1) 倍加到 n-1 行,由此类推至把第 1 行的 (-1) 倍加到第 2 行得

$$D_n = \begin{vmatrix} 0 & 1 & 2 & \dots & n-2 & n-1 \\ 1 & -1 & -1 & \dots & -1 & -1 \\ 1 & 1 & -1 & \dots & -1 & -1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 1 & 1 & 1 & \dots & -1 & -1 \\ 1 & 1 & 1 & \dots & 1 & -1 \end{vmatrix}$$

将第n列分别加至前边各列

$$D_n = \begin{vmatrix} n-1 & n & n+1 & \dots & 2n-3 & n-1 \\ 0 & -2 & -2 & \dots & -2 & -1 \\ 0 & 0 & -2 & \dots & -2 & -1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & -2 & -1 \\ 0 & 0 & 0 & \dots & 0 & -1 \end{vmatrix} = (-1)^{n-1} 2^{n-2} (n-1)$$

例 1.8 计算 n 阶行列式

$$D_n = \begin{vmatrix} x & -1 & 0 & \dots & 0 & 0 \\ 0 & x & -1 & \dots & 0 & 0 \\ 0 & 0 & x & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & x & -1 \\ a_n & a_{n-1} & a_{n-2} & \dots & a_2 & x+a_1 \end{vmatrix}$$

解: 先把第 n 列的 x 倍加到第 n-1 列,再把第 n-1 列的 x 倍加到第 n-2 列,……,最后吧第 2 列的 x 倍加到第 1 列得

$$D_n = \begin{vmatrix} 0 & -1 & 0 & \dots & 0 \\ 0 & 0 & 0 & -1 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & -1 \\ x^n + \sum_{k=0}^{n-1} a_{n-k} x^k & x^{n-1} + \sum_{k=0}^{n-2} a_{n-1-k} x^k & x^{n-2} + \sum_{k=0}^{n-3} a_{n-2-k} x^k & \dots & x + a_1 \end{vmatrix}$$

根据第1列展开得:

$$D_n = (-1)^{n+1} (x^n + \sum_{k=0}^{n-1} a_{n-k} x^k) (-1)^{n-1}$$
$$= x^n + \sum_{k=0}^{n-1} a_{n-k} x^k$$

例 1.9 计算 n 阶行列式

$$D_n = \begin{vmatrix} a+b & ab & 0 & \dots & 0 & 0 \\ 1 & a+b & ab & \dots & 0 & 0 \\ 0 & 1 & a+b & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a+b & ab \\ 0 & 0 & 0 & \dots & 1 & a+b \end{vmatrix}$$

方法一: 将 D_n 按照第一行展开, 得:

$$D_n = (a+b)D_{n-1} - ab \begin{vmatrix} 1 & ab & \dots & 0 & 0 \\ 0 & a+b & \dots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \dots & a+b & ab \\ 0 & 0 & \dots & 1 & a+b \end{vmatrix}$$

再将
$$\begin{vmatrix} 1 & ab & \dots & 0 & 0 \\ 0 & a+b & \dots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \dots & a+b & ab \\ 0 & 0 & \dots & 1 & a+b \end{vmatrix}$$
 按照第 1 列展开,得

 $D_n = (a+b)D_{n-1} - abD_{n-2}$

可用特征方程求解

以下是对特征方程的知识补充: 考虑 $a_{n+2} = pa_{n+1} + qa_n, n \in N^+$.

1. 若 a, b 是方程
$$x^2-px-q=0$$
 的根, $a\neq b$, 则

$$a_n = Aa^{n-1} + Bb^{n-1}$$

其中 A, B 由 a_1,a_2 唯一地确定

2. 若方程
$$x^2 - px - q = 0$$
 有唯一的根 a, 则

$$a_n = (A + Bn)a^{n-1}$$

其中 A, B 由 a₁,a₂ 唯一地确定

方法二: 将 D_n 按第 1 列分成两个行列式,得

$$D_n = \begin{vmatrix} a & ab & 0 & \dots & 0 & 0 \\ 0 & a+b & ab & \dots & 0 & 0 \\ 0 & 1 & a+b & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a+b & ab \\ 0 & 0 & 0 & \dots & 1 & a+b \end{vmatrix} + \begin{vmatrix} b & ab & 0 & \dots & 0 & 0 \\ 1 & a+b & ab & \dots & 0 & 0 \\ 0 & 1 & a+b & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a+b & ab \\ 0 & 0 & 0 & \dots & 1 & a+b \end{vmatrix}$$

针对
$$\begin{vmatrix} b & ab & 0 & \dots & 0 & 0 \\ 1 & a+b & ab & \dots & 0 & 0 \\ 0 & 1 & a+b & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a+b & ab \\ 0 & 0 & 0 & \dots & 1 & a+b \end{vmatrix}$$
 的处理与例 1.8 的很相近,将第

1 列的 (-a) 倍加到第 2 列上,将第 2 列的 (-a) 倍加到第 3 列上,.....,将 第 n-1 列的 (-a) 倍加到第 n 列,得:

$$\begin{vmatrix} b & 0 & 0 & \dots & 0 & 0 \\ 1 & b & 0 & \dots & 0 & 0 \\ 0 & 1 & b & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & b & \\ 0 & 0 & 0 & \dots & 1 & b \end{vmatrix} = b^n$$

因此 $D_n = aD_{n-1} + b^n$

同理,将 D_n 分成

$$D_{n} = \begin{vmatrix} a & ab & 0 & \dots & 0 & 0 \\ 1 & a+b & ab & \dots & 0 & 0 \\ 0 & 1 & a+b & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a+b & ab \\ 0 & 0 & 0 & \dots & 1 & a+b \end{vmatrix} + \begin{vmatrix} b & ab & 0 & \dots & 0 & 0 \\ 0 & a+b & ab & \dots & 0 & 0 \\ 0 & 1 & a+b & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a+b & ab \\ 0 & 0 & 0 & \dots & 1 & a+b \end{vmatrix}$$
$$= bD_{n-1} + a^{n}$$

两式联立解得

$$D_n = \frac{a^{n+1} - b^{n+1}}{a - b} (a \neq b)$$

a=b 时, 容易解得 $D_n = (n+1)a^n$

例 1.12 计算
$$D_n = \begin{vmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 2 & 3 & 4 & \cdots & n & 1 \\ 3 & 4 & 5 & \cdots & 1 & 2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ n-1 & n & 1 & \cdots & n-3 & n-2 \\ n & 1 & 2 & \cdots & n-2 & n-1 \end{vmatrix}$$

解: 行和相等, 把各列元素加到第 1 列, 提出公因子 $\frac{n(n+1)}{2}$, 得:

$$D_n = \frac{n(n+1)}{2} \begin{vmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 1 & 3 & 4 & \cdots & n & 1 \\ 1 & 4 & 5 & \cdots & 1 & 2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 1 & n & 1 & \cdots & n-3 & n-2 \\ 1 & 1 & 2 & \cdots & n-2 & n-1 \end{vmatrix}$$

从此处起的思路与例 1.6 相仿, 由于相邻两行错位排放, 从最后一行起,

依次减去前一行,得:

$$D_n = \frac{n(n+1)}{2} \begin{vmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 0 & 1 & 1 & \cdots & 1 & 1-n \\ 0 & 1 & 1 & \cdots & 1-n & 1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 1 & 1-n & \cdots & 1 & 1 \\ 0 & 1-n & 1 & \cdots & 1 & 1 \end{vmatrix}$$

按照第一列展开,得:

$$D_{n} = \frac{n(n+1)}{2} \begin{vmatrix} 1 & 1 & \cdots & 1 & 1-n \\ 1 & 1 & \cdots & 1-n & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & 1-n & \cdots & 1 & 1 \\ 1-n & 1 & \cdots & 1 & 1 \end{vmatrix}$$

$$= \frac{n(n+1)}{2} \begin{vmatrix} 1 & 1 & \cdots & 1 & 1-n \\ 0 & 0 & \cdots & -n & n \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & -n & \cdots & 0 & n \\ -n & 0 & \cdots & 0 & n \end{vmatrix}$$

将各行乘以 $\frac{1}{n}$ 加到第 1 行得:

$$D_{n} = \frac{n(n+1)}{2} \begin{vmatrix} 0 & 0 & \cdots & 0 & -1 \\ 0 & 0 & \cdots & -n & n \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & -n & \cdots & 0 & n \\ -n & 0 & \cdots & 0 & n \end{vmatrix} = (-1)^{\frac{n(n-1)}{2}} \cdot \frac{n+1}{2} \cdot n^{n-1}$$

例 1.16 计算 n 阶行列式(其中 $a_i \neq 0, i = 1, 2, \dots, n$)

$$D_n = \begin{vmatrix} a_1^{n-1} & a_2^{n-1} & a_3^{n-1} & \cdots & a_n^{n-1} \\ a_1^{n-2}b_1 & a_2^{n-2}b_2 & a_3^{n-2}b_3 & \cdots & a_n^{n-2}b_n \\ \vdots & \vdots & \vdots & & \vdots \\ a_1b_1^{n-2} & a_2b_2^{n-2} & a_3b_3^{n-2} & \cdots & a_nb_n^{n-2} \\ b_1^{n-1} & b_2^{n-1} & b_3^{n-1} & \cdots & b_n^{n-1} \end{vmatrix}$$

解: 从 D_n 的第 j 列提取因子 a_j^{n-1} ,(j=1,2,···,n), 由范德蒙行列式的结论得:

$$D_{n} = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ \frac{b_{1}}{a_{1}} & \frac{b_{2}}{a_{2}} & \frac{b_{3}}{a_{3}} & \cdots & \frac{b_{n}}{a_{n}} \\ \vdots & \vdots & \vdots & & \vdots \\ \left(\frac{b_{1}}{a_{1}}\right)^{2} & \left(\frac{b_{2}}{a_{2}}\right)^{2} & \left(\frac{b_{3}}{a_{3}}\right)^{2} & \cdots & \left(\frac{b_{n}}{a_{n}}\right)^{2} \\ \left(\frac{b_{1}}{a_{1}}\right)^{n-1} & \left(\frac{b_{2}}{a_{2}}\right)^{n-1} & \left(\frac{b_{3}}{a_{3}}\right)^{n-1} & \cdots & \left(\frac{b_{n}}{a_{n}}\right)^{n-1} \end{vmatrix}$$

$$= (a_1 a_2 \cdots a_n)^{n-1} \prod_{1 \le j < i \le n} \left(\frac{b_i}{a_i} - \frac{b_j}{a_j} \right)$$

计算题.1(3): 利用行列式得性质计算下列行列式:

$$\begin{vmatrix} 246 & 427 & 327 \\ 14 & 543 & 443 \\ -342 & 721 & 621 \end{vmatrix}$$

突破点: 每行之和为 1000

解

$$\begin{vmatrix} 246 & 427 & 327 \\ 14 & 543 & 443 \\ -342 & 721 & 621 \end{vmatrix} = \begin{vmatrix} 1000 & 427 & 327 \\ 1000 & 543 & 443 \\ 1000 & 721 & 621 \end{vmatrix} = 1000 \begin{vmatrix} 1 & 427 & 327 \\ 1 & 543 & 443 \\ 1 & 721 & 621 \end{vmatrix}$$

$$= 1000 \begin{vmatrix} 1 & 100 & 327 \\ 1 & 100 & 443 \\ 1 & 100 & 621 \end{vmatrix} = 10^5 \begin{vmatrix} 1 & 1 & 327 \\ 1 & 1 & 443 \\ 1 & 1 & 621 \end{vmatrix} = 0$$

2 矩阵

(1) 求 A^n (n=2,3,.....);

由此可得: $A^{2k} = (A^2)^k = (4E)^k = 4^k E$. $A^{2k+1} = (A^2)^k A = (4E)^k A = 4^k A$.(k=1,2,.....)

(2) 若方阵 B 满足 $A^2 + AB - A = E$, 求 B.

解: 由 $A^2 = 4E$ 可知 A 可逆, 且 $A^{-1} = \frac{1}{4}A$, 故由 $A^2 + AB - A = E$, 得:

$$AB = E + A - A^{2}$$

$$B = A^{-1}(E + A - A^{2})$$

$$B = A^{-1} + E - A = \frac{1}{4}A + E - A = E - \frac{3}{4}A.$$

例 2.15 设 A、B、C、D 均为 n 阶矩阵, 且 A 可逆, 证明:

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |A||D - CA^{-1}B|;$$

证(1)由于分块行列式的相乘:

$$\begin{vmatrix} P & R \\ O & Q \end{vmatrix} = |P||Q|$$

我们设法通过分块矩阵的相乘将 $\begin{vmatrix} A & B \\ C & D \end{vmatrix}$ 中的矩阵 C 化为 O.

$$\begin{bmatrix} E & O \\ -CA^{-1} & E \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A & B \\ O & D - CA^{-1}B \end{bmatrix}$$

由于矩阵行列式的乘法原则,且 $\begin{vmatrix} E & O \\ -CA^{-1} & E \end{vmatrix} = |E||E| = 1$, 两边同时取行

列式,即得:

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |A||D - CA^{-1}B|$$

例 2.16 设 A 为 $m \times n$ 阶矩阵, B 为 $n \times m$ 阶矩阵, 证明: $|I_m - AB| = |I_n - BA|$.

证由分块矩阵乘法得:

$$\begin{bmatrix} I_m & O \\ -B & I_n \end{bmatrix} \begin{bmatrix} I_m & A \\ B & I_n \end{bmatrix} = \begin{bmatrix} I_m & A \\ O & I_n - BA \end{bmatrix}$$
$$\begin{bmatrix} I_m & -A \\ O & I_n \end{bmatrix} \begin{bmatrix} I_m & A \\ B & I_n \end{bmatrix} = \begin{bmatrix} I_m - AB & O \\ B & I_n \end{bmatrix}$$

以上两式两端分别取行列式得:

$$\begin{vmatrix} I_m & A \\ B & I_n \end{vmatrix} = \begin{vmatrix} I_m & A \\ O & I_n - BA \end{vmatrix} = |I_n - BA|, \begin{vmatrix} I_m & A \\ B & I_n \end{vmatrix} = \begin{vmatrix} I_m - AB & O \\ B & I_n \end{vmatrix} = |I_m - AB|$$

故结论得证.

例 2.17 设 A、B 均为 n 阶方阵,且满足 $A^2 = I, B^2 = I, |A| + |B| = 0.$ 证明: |A + B| = 0.

由 $A^2=I$ 两边取行列式得 $|A|=\pm 1$, 同理 $|B|=\pm 1$, 又因为 |A|=-|B|. 得:

$$|A+B| = |AI+IB| = |AB^2+A^2B| = |A(B+A)B| = |A||B+A||B| = -|A+B|.$$
 于是得 $|A+B| = 0$.

计算题.6 设
$$A = \begin{bmatrix} 2 & & \\ & 2 & \\ & & 3 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 3 & 3 \\ 2 & 2 & 2 \end{bmatrix},$$
 矩阵 X 满足 $AXA - ABA = XA - AB$, 求 X^3 .

$$AXA - ABA = XA - AB$$

$$AXA - XA = ABA - AB$$

$$(A - I)XA = AB(A - I)$$

$$X = (A - I)^{-1}AB(A - I)A^{-1}$$

$$X = (A - I)^{-1}(A^{-1})^{-1}B(AA^{-1} - A^{-1})$$

$$X = (A^{-1}(A - I))^{-1}B(I - A^{-1})$$

$$X = (I - A^{-1})^{-1}B(I - A^{-1})$$

因此,可以得到:

$$X^3 = (I - A^{-1})^{-1}B^3(I - A^{-1})$$

代入 A、B 即可求解.

3 几何向量及其应用

例 3.11 已知两直线的方程为:
$$L_1$$
:
$$\begin{cases} 2x - 2y - z + 1 = 0 \\ x + 2y - 2z - 4 = 0 \end{cases}$$
, L_2 : $\frac{x-1}{1} = \frac{y+2}{2} = \frac{z}{2}$

- (1) 证明两直线异面
- (2) 求它们之间的距离
- (3) 求此二直线的公垂线方程

由于几何向量部分的题技巧性较弱,题型大同小异,此处展示一道比较全面题,分析其思路,具体答案请参考教辅书。申明:以下的向量不特殊表示(a、b、PQ均为向量)

思路 (1) 由于 L_1 为直线的一般式,通过两平面法向量叉乘得到直线的方向向量,结合一般式可得直线上的一点;

证明两直线异面的方法:取两条直线上各一点 P、Q,两直线的方向向量 a、b。 $[a \ b \ PQ] \neq 0$ (三个向量的混合积),则两直线异面。

(2) 已知方向向量 a、b, $a \times b$ 为垂直于两条直线的向量,两条直线的 距离即为 PQ 在 $a \times b$ 上的射影。 $(3)a \times b$ 即为两直线公垂线的方向向量,由于公垂线上的点不便求得,用一般式来表示公垂线更为方便。显然,公垂线为 a、 $a \times b$ 确定平面与 b、 $a \times b$ 确定平面的交线。且两个平面都可以由点法式得到(直线上的点即为平面上的点,平面上两向量叉乘的结果即为平面上的法向量)

证明题.2 若 $a \times b + b \times c + c \times a = 0$, 则 a、b、c 共面证明: 式子两边同时点乘 a, 得:

$$a \cdot a \times b + a \cdot b \times c + a \cdot c \times a = 0$$

由于叉乘的几何意义,即

$$a \cdot b \times c = 0$$

$$\begin{bmatrix} a & b & c \end{bmatrix} = 0$$

则 a、b、c 共面, 得证。

MOOC 习题

(注:思路并不是唯一的,也很可能不是最优的)

行列式相关:

1、 (MOOC 期中模拟 1, 4) $A = (\alpha, \gamma_1, \gamma_2, \gamma_3)$, $B = (\beta, \gamma_1, \gamma_2, \gamma_3)$, |A| = 4, |B| = 1, 求 |A + B|。

思路: 行列式的基本性质

解答:
$$|A + B| = |(\alpha + \beta, 2\gamma_1, 2\gamma_2, 2\gamma_3)|$$

 $= |(\alpha, 2\gamma_1, 2\gamma_2, 2\gamma_3)| + |(\beta, 2\gamma_1, 2\gamma_2, 2\gamma_3)|$
 $= 8|(\alpha, \gamma_1, \gamma_2, \gamma_3)| + 8|(\beta, \gamma_1, \gamma_2, \gamma_3)|$
 $= 8|A| + 8|B| = 40$

$$2$$
、(MOOC 行列式习题) $D = \begin{vmatrix} 2 & -3 & 1 & 5 \\ -1 & 5 & 7 & -8 \\ 2 & 2 & 2 & 2 \\ 0 & 1 & -1 & 0 \end{vmatrix}$, 求 $M_{14} + M_{24} + M_{$

 $M_{34} + M_{44}$

思路: 1、D 的第 4 列元素的余子式之和,是将 D 的第 4 列换为 $(-1)^{i+4}$ 的行列式的值

2、数字行列式求值

解答:

 $M_{14} + M_{24} + M_{34} + M_{44}$

$$= -A_{14} + A_{24} - A_{34} + A_{44}$$

$$= \begin{vmatrix} 2 & -3 & 1 & -1 \\ -1 & 5 & 7 & 1 \\ 2 & 2 & 2 & -1 \\ 0 & 1 & -1 & 1 \end{vmatrix} = - \begin{vmatrix} -1 & 5 & 7 & 1 \\ 0 & 7 & 15 & 1 \\ 0 & 12 & 16 & 1 \\ 0 & 1 & -1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} -1 & 5 & 7 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 28 & -11 \\ 0 & 0 & 22 & -6 \end{vmatrix} = \begin{vmatrix} -1 & 5 \\ 1 \end{vmatrix} \times \begin{vmatrix} 28 & -11 \\ 22 & -6 \end{vmatrix} = -74$$

3、(MOOC 期中模拟 1, 7) 计算
$$\begin{vmatrix} 2 & 2 & 2 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$$

思路: 化为范德蒙行列式

解答:
$$\begin{vmatrix} 2 & 2 & 2 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = 2 \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = 2(b-a)(c-a)(c-b)$$

4、(MOOC 期中模拟 3, 1) 已知 x, y, z 两两不相等,则

$$\begin{vmatrix} x + y & z & z^{2} \\ y + z & x & x^{2} \\ z + x & y & y^{2} \end{vmatrix} = 0 \text{ 的充要条件是 ()}$$

A.
$$xyz = 0$$

A.
$$xyz = 0$$
 B. $x + y + z = 0$

C.
$$x = -y$$
, $z = 0$ D. $y = -z$, $x = 0$

D.
$$y = -z$$
, $x = 0$

思路:后两列是范德蒙行列式,可以将第2列加到第1列上,然后

转化为范德蒙行列式

解答:

$$\begin{vmatrix} x + y & z & z^{2} \\ y + z & x & x^{2} \\ z + x & y & y^{2} \end{vmatrix} = \begin{vmatrix} x + y + z & z & z^{2} \\ x + y + z & x & x^{2} \\ x + y + z & y & y^{2} \end{vmatrix}$$

$$= (x + y + z) \begin{vmatrix} 1 & z & z^{2} \\ 1 & x & x^{2} \\ 1 & y & y^{2} \end{vmatrix}$$

$$= (x + y + z)(y - z)(x - z)(y - x)$$

由 x, y, z 两两不相等, 得x + y + z = 0

PS: 此题为选择题,且转化为范德蒙行列式的思路不易想到,因此直接尝试对4个选项找反例,或暴力计算出行列式的值,并与4个选项对照也是合适的方法。

5、(MOOC 期中模拟 3, 11)

$$A_{n} = \begin{pmatrix} 2a & 1 & 0 & \dots & 0 & 0 & 0 \\ a^{2} & 2a & 1 & \dots & 0 & 0 & 0 \\ 0 & a^{2} & 2a & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 2a & 1 & 0 \\ 0 & 0 & 0 & \dots & a^{2} & 2a & 1 \\ 0 & 0 & 0 & \dots & 0 & a^{2} & 2a \end{pmatrix} \quad \boldsymbol{x} = \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n-1} \\ x_{n} \end{pmatrix} \quad \boldsymbol{b} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$

- (1) 证明: $|A| = (n+1)a^n$
- (2) 当 a 为何值时,Ax = b有唯一解?并在此时求 x_1 和 x_n

思路:

- (1) "三对角行列式"的通项公式,通常使用数学归纳法与按行展开来证明。
- (2) 有关方程唯一解,使用 Cramer 法则解答:

$$\begin{vmatrix} 0 & 0 & 0 & \dots & 2a \\ 0 & 0 & 0 & \dots & a^2 \\ 0 & 0 & 0 & \dots & 0 \end{vmatrix}$$
$$= 2a|A_n| - a^2|A_{n-1}|$$

$$= 2(n+1)a^{n+1} - na^{n+1}$$
$$= (n+2)a^{n+1}$$

(2) 根据 Cramer 法则

$$Ax = b = |A| = 0 \Leftrightarrow |A| \neq 0 \Leftrightarrow (n+1)a^n \neq 0 \Leftrightarrow a \neq 0$$

$$\begin{vmatrix}
1 & 1 & 0 & \dots & 0 & 0 & 0 \\
0 & 2a & 1 & \dots & 0 & 0 & 0 \\
0 & a^2 & 2a & \dots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \dots & 2a & 1 & 0 \\
0 & 0 & 0 & \dots & a^2 & 2a & 1 \\
0 & 0 & 0 & \dots & 0 & a^2 & 2a
\end{vmatrix}$$

$$x_1 = \frac{|A_{n-1}|}{|A_n|} = \frac{n}{(n+1)a}$$

$$x_{n} = \frac{\begin{vmatrix} 2a & 1 & 0 & \dots & 0 & 0 & 1 \\ a^{2} & 2a & 1 & \dots & 0 & 0 & 0 \\ 0 & a^{2} & 2a & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 2a & 1 & 0 \\ 0 & 0 & 0 & \dots & a^{2} & 2a & 0 \\ 0 & 0 & 0 & \dots & 0 & a^{2} & 0 \end{vmatrix}}{\begin{vmatrix} A_{n} \end{vmatrix}}$$

$$= \frac{(-1)^{n+1} \begin{vmatrix} a^{2} & 2a & 1 & 1 \\ a^{2} & 2a & 1 & 1 \\ a^{2} & 2a & \ddots & \ddots \\ a^{2} & & \ddots & \ddots \\ & & & & a^{2} \end{vmatrix}}{|A_{n}|} = \frac{(-1)^{n+1}a^{2n-2}}{(n+1)a^{n}}$$

$$= \frac{(-1)^{n+1}a^{n-2}}{n+1}$$

思路:观察到每行除主对角线相同,可将每行减去第1行变为"箭形行列式",再将"箭形行列式"化为上(或下)三角

解答:

$$\begin{vmatrix} 0 & 2 & 3 & 4 & 5 \\ 1 & 0 & 3 & 4 & 5 \\ 1 & 2 & 0 & 4 & 5 \\ 1 & 2 & 3 & 0 & 5 \\ 1 & 2 & 3 & 3 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 2 & 3 & 4 & 5 \\ 1 & -2 & 0 & 0 & 0 \\ 1 & 0 & -3 & 0 & 0 \\ 1 & 0 & 0 & -4 & 0 \\ 1 & 0 & 0 & 0 & -5 \end{vmatrix} =$$

$$= \begin{vmatrix} 4 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & 0 \\ 1 & 0 & -3 & 0 & 0 \\ 1 & 0 & 0 & -4 & 0 \\ 1 & 0 & 0 & 0 & -5 \end{vmatrix} = 480$$

7、行列式 D 的值为 a,每行元素之和为 b,则 D 的第 j 列代数余子式之和 $A_{1i} + A_{2i} + \cdots + A_{ni} =$ ______

思路: 1、从D是"行和相等"的行列式入手

2、D的第 j 列代数余子式之和,是把 D 的第 j 列全换成 1 的行列式的值。

解答:
$$A_{1j} + A_{2j} + \cdots + A_{nj} = \begin{vmatrix} a_{11} & \dots & 1 & \dots & a_{1n} \\ a_{21} & \dots & 1 & \dots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & 1 & \dots & a_{nn} \end{vmatrix}$$

$$a = D = \begin{vmatrix} a_{11} & \dots & a_{j1} & \dots & a_{1n} \\ a_{21} & \dots & a_{j2} & \dots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{jn} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & \dots & b & \dots & a_{1n} \\ a_{21} & \dots & b & \dots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & b & \dots & a_{nn} \end{vmatrix}$$

$$= b \begin{vmatrix} a_{11} & \dots & 1 & \dots & a_{1n} \\ a_{21} & \dots & 1 & \dots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & 1 & \dots & a_{nn} \end{vmatrix}$$

$$A_{1j} + A_{2j} + \cdots + A_{nj} = \frac{a}{b}$$

矩阵相关:

1. (MOOC 矩阵习题)
$$A = \begin{pmatrix} 3 & 4 & 0 & 0 \\ 4 & -3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 2 \end{pmatrix}$$
, 求 A^4

思路:观察到A右上和左下的2×2子矩阵均为0,可将A分块为

 $\begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix}$,然后计算分块对角阵的幂。

解答: 令
$$A_{11} = \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}$$
, $A_{22} = \begin{pmatrix} 2 & 0 \\ 2 & 2 \end{pmatrix}$

则 $A = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix}$

得 $A^4 = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix}^4 = \begin{pmatrix} A_{11}^4 & 0 \\ 0 & A_{22}^4 \end{pmatrix}$
 $A_{11}^2 = \begin{pmatrix} 25 & 0 \\ 0 & 25 \end{pmatrix}$
 $A_{11}^4 = (A_{11}^2)^2 = \begin{pmatrix} 625 & 0 \\ 0 & 625 \end{pmatrix}$
 $A_{22}^2 = \begin{pmatrix} 4 & 0 \\ 8 & 4 \end{pmatrix}$
 $A_{22}^4 = (A_{22}^2)^2 = \begin{pmatrix} 16 & 0 \\ 64 & 16 \end{pmatrix}$
 $A^4 = \begin{pmatrix} 625 & 0 & 0 & 0 \\ 0 & 625 & 0 & 0 \\ 0 & 0 & 16 & 0 \\ 0 & 0 & 64 & 16 \end{pmatrix}$

2. (MOOC 矩阵习题) 若方阵A满足 $A^3 = 0$,求 $(I - A)^{-1}$

思路:给定方阵A满足的某个简单条件,求有关方阵B的逆矩阵,一般可以通过条件进行变形,"凑"出形如BC = I的式子,则可得出 $B^{-1} = C$

解答:由
$$A^3 = 0$$
 得 $I - A^3 = I$ 因式分解 $(I - A)(I + A + A^2) = I$ 得 $(I - A)^{-1} = (I + A + A^2)$

3. (MOOC 期中模拟 1.8) 设 $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, [为 3 阶单位阵,求 $(A+3I)^{-1}(A^2-9I)$

思路:可以直接计算,但更好的方法是先化简所求式子在计算

解答:
$$(A-3I)^{-1}(A^2-9I)$$

= $(A+3I)^{-1}(A+3I)(A-3I)$
= $A-3I = \begin{pmatrix} -2 & 0 & 1\\ 0 & -1 & 0\\ 0 & 0 & -2 \end{pmatrix}$

4. (MOOC 期中模拟 3. 14) 设B = $\begin{pmatrix} 1 & -1 & -1 \\ & 1 & -1 \\ & & 1 & -1 \end{pmatrix}$,

$$C = \begin{pmatrix} 2 & 1 & 3 & 4 \\ & 2 & 1 & 3 \\ & & 2 & 1 \\ & & & 2 \end{pmatrix}$$
, I 为单位阵,矩阵A满足

$$A(I - C^{-1}B)^T C^T = I, \quad \Re A$$

思路:矩阵方程,先化简等式左侧再进行计算

(强烈建议求完逆矩阵后验算!)

解答:
$$A(I - C^{-1}B)^T C^T = A(I^T - (C^{-1}B)^T) C^T$$

 $= A(I - B^T (C^{-1})^T) C^T$
 $= A(C^T - B^T)$
 $A(C^T - B^T) = A\begin{pmatrix} 1 & 1 & 1 & 1 \\ 3 & 2 & 1 & 1 \\ 4 & 3 & 2 & 1 \end{pmatrix} = I$
 $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 3 & 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -2 & 1 & 1 \\ 0 & 1 & -2 & 1 \end{pmatrix}$
(经检验, $A(C^T - B^T) = I$,答案正确)

5. (MOOC 期中模拟 3.15) 判断矩阵
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -2 & -1 & -2 \\ 4 & 1 & 2 & 1 \\ 2 & 5 & a & b \end{pmatrix}$$
 的秩

思路:类似于求纯数字矩阵的秩,先利用初等行变换,化为行阶梯形,再分类讨论判断非0行的行数,同时避免"把含有未知数的一行的 k 倍加到另一行上"的操作

解答:
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -2 & -1 & -2 \\ 4 & 1 & 2 & 1 \\ 2 & 5 & a & b \end{pmatrix}$$

$$\xrightarrow{\begin{array}{c} r_{12}(-1) \\ r_{13}(-4) \\ \hline \end{array}} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -3 & -2 & -3 \\ 0 & -3 & -2 & -3 \\ 0 & 3 & a-2 & b-2 \end{pmatrix}$$

$$\xrightarrow{\mathbf{r}_{34}} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -3 & -2 & -3 \\ 0 & 0 & a-4 & b-5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

当
$$a = 4$$
 且 $b = 5$ 时, $r(A) = 2$

当a
$$\neq$$
 4 或 b \neq 5 时, $r(A) = 3$

6.
$$A = (a_{ij})_3 \times_3$$
为非零实矩阵, A_{ij} 为 a_{ij} 的代数余子式, $a_{ij} + A_{ij} = 0$

(1) 求
$$|A|$$
 (2) 证明 $AA^T = I$

思路: (1) 题目条件涉及 A_{ij} 与 a_{ij} 的关系,需要利用伴随矩阵,由条件可得 $A^T = -A^*$,利用转置矩阵与伴随矩阵的行列式,可求出|A|为0或-1,然后利用 $A \neq 0$,将0舍去(如果没学过伴随矩阵与原矩阵秩的关系(课本习题 4. 4(B)5),一般要在做(2)时才会意识到要将0舍去)

(2) 利用 A^T 与 A^* 的关系,直接计算即可解答:

(1)
$$A^{T} = -A^{*}$$

$$|A^{T}| = |-A^{*}|$$

$$|A| = (-1)^{3}|A|^{2}$$

$$|A|^{2} + |A| = 0$$

$$|A| = 0或 -1$$

$$|A| = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$$

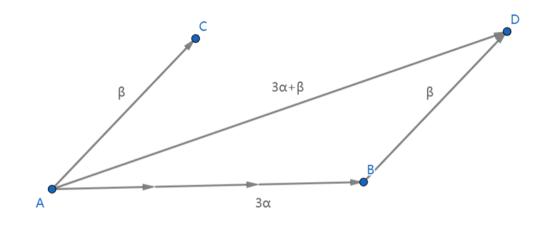
$$= -a_{11}^{2} - a_{12}^{2} - a_{13}^{2} < 0$$

$$得|A| = -1$$
(2) $AA^{T} = A(-A^{*}) = (-1)^{3}AA^{*} = (-1)^{3}(-1)I = I$

几何向量相关:

1. (MOOC 几何向量习题)
$$\|\vec{\alpha}\|=1$$
, $\|\vec{\beta}\|=2$, $\vec{\alpha}$ 与 $\vec{\beta}$ 夹角为 $\theta=\frac{\pi}{4}$,求
$$\|3\vec{\alpha}+\vec{\beta}\|$$

思路: 构建向量三角形,利用余弦定理求解



解答:

$$||3\vec{\alpha} + \vec{\beta}||^2 = ||3\vec{\alpha}||^2 + ||\vec{\beta}||^2 - 2||3\vec{\alpha}|| ||\vec{\beta}|| \cos(\pi - \theta)$$
$$||3\vec{\alpha} + \vec{\beta}||^2 = 13 + 6\sqrt{2}$$

$$||3\vec{\alpha} + \vec{\beta}|| = \sqrt{13 + 6\sqrt{2}}$$

2. (MOOC 期中模拟 3.10)以 A(1,1,1) B(2,0,1) C(0,0,1) D(1,3,2) 为顶点的四面体面积是_____

思路: 1. 混合积几何意义

2. A, B, C, D 为顶点的四面体体积为 AB,AC,AD 为邻棱的平行 六面体体积的 $\frac{1}{6}$ 。

解答:

$$\begin{bmatrix} \overrightarrow{AB} & \overrightarrow{AC} & \overrightarrow{AD} \end{bmatrix} = \begin{vmatrix} 1 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & 2 & 1 \end{vmatrix} = -2$$

$$V = \frac{1}{6} | \begin{bmatrix} \overrightarrow{AB} & \overrightarrow{AC} & \overrightarrow{AD} \end{bmatrix} | = \frac{1}{3}$$

3. (MOOC 期中模拟 1.15) 证明直线 L_1 : $\frac{x+1}{3} = \frac{y+1}{2} = \frac{z+1}{1}$ 与 L_2 : $\frac{x-4}{1} = \frac{y+5}{-3} = \frac{z-4}{2}$ 位于同一平面,并求这两条直线的交点坐标和所在平面方程。

思路: 证明位于同一平面,利用课本 3.3.4 的结论,或者直接求出交点也可证明 L_1 , L_2 位于同一平面

求交点坐标,将 L_1 , L_2 方程当成 4 个三元一次方程求解,或转化为参数方程后求参数(课本 3.3.4)。

求所在平面方程,大部分此类题目都是求出法向量和平面上一点,写出点法式方程,(然后最好转为一般式)

解答:

$$L_1$$
过 $P_1(-1,-1,-1)$,方向向量为 $\overline{l_1} = (3,2,1)$

$$L_2$$
过 P_2 (4, - 5,4), 方向向量为 1_2 = (1, - 3,2)

$$\overline{P_1P_2} = (5, -4, 5)$$

$$\begin{bmatrix} \overrightarrow{P_1P_2} & \overrightarrow{l_1} & \overrightarrow{l_2} \end{bmatrix} = \begin{vmatrix} 5 & -4 & 5 \\ 3 & 2 & 1 \\ 1 & -3 & 2 \end{vmatrix} = 0, \quad L_1, L_2 \sharp \overline{m}$$

求交点:
$$\begin{cases} \frac{x+1}{3} = \frac{y+1}{2} = \frac{z+1}{1} \\ \frac{x-4}{1} = \frac{y+5}{-3} = \frac{z-4}{2} \end{cases}$$

整理得
$$\begin{cases} 2x + 2 = 3y + 3 \\ x + 1 = 3z + 3 \\ 12 - 3x = y + 5 \\ 2x - 8 = z - 4 \end{cases}$$
解得
$$\begin{cases} x = 2 \\ y = 1 \\ z = 0 \end{cases}$$

或用参数方程:

$$L_1: \begin{cases} x = 3t - 1 \\ y = 2t - 1 \\ z = t - 1 \end{cases} \qquad L_2: \begin{cases} x = s + 4 \\ y = -3s - 5 \\ z = 2s + 4 \end{cases}$$

$$\begin{cases} 3t-1=s+4 \\ 2t-1=-3s-5 \\ t-1=2s+4 \end{cases}$$

$$\text{解} \{ \begin{cases} t=1 \\ s=-2 \end{cases} \}$$

$$\{ \begin{cases} x=2 \\ y=1 \\ z=0 \end{cases} \}$$

交点坐标为(2,1,0)

$$\vec{l}_1 \times \vec{l}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & 2 & 1 \\ 1 & -3 & 2 \end{vmatrix} = (7, -5, -11)$$

可取平面法向量 $\vec{n} = \vec{l}_1 \times \vec{l}_2 = (7, -5, -11)$

平面过点 $P_1 = (-1, -1, -1)$

平面方程为
$$7(x+1)-5(y+1)-11(z+1)=0$$
 或 $7x-5y-11z-9=0$

4. (MOOC 期中模拟 2. 15)直线 L 过P(1,0, -2),与平面 $\pi:3x-y+2z+1=0$ 平行,与直线 $L_1:\frac{x-1}{4}=\frac{y-3}{-2}=z$ 相交,求L 的对称式方程。

思路:已知L过某点,只需求出L的方向向量即可写出对称式方程。L的方向向量可根据L与 π ,L₁的位置关系列出方程求解

解答:

设 L方向向量为 $\overline{l} = (x,y,z)$

 L_1 过 P_1 (1,3,0),方向向量 $\overline{l_1}$ = (4, -2,1), π 法向量 \overline{n} = (3, -1,2)

由L与 π 平行得: $\vec{l} \perp \vec{n}$, 即3x - y + 2z = 0

由L与L₁相交得: $\begin{bmatrix} \vec{l} & \overrightarrow{l_1} & \overrightarrow{P_0P_1} \end{bmatrix} = \mathbf{0}$

$$\mathbb{R}\begin{bmatrix} x & y & z \\ 4 & -2 & 1 \\ 0 & 3 & 2 \end{bmatrix} = -7x - 8y + 12z = 0$$

于是有
$$\begin{cases} -7x - 8y + 12z = 0 \\ 3x - y + 2z = 0 \end{cases}$$
解得 $\begin{cases} x = -\frac{4}{31}z \\ y = \frac{50}{31}z \end{cases}$

可取
$$\vec{l} = (-4, 50, 31)$$

对称式方程为
$$\frac{x-1}{-4} = \frac{y}{50} = \frac{z+2}{31}$$

5. (MOOC 期中模拟 3.13) 设有两条直线
$$L_1$$
: $\begin{cases} x - y = 3 \\ 3x - y + z = 1 \end{cases}$ 与 L_2 : $x + 1 = \frac{y-1}{-2} = \frac{z}{2}$,与点 $M(1,0,-1)$

- (1) 求 L_1 对称式方程 (2) 求M到 L_1 的距离
- (3) 判断L₁,L₂位置关系(重合/相交/平行/异面)

思路: (1) 将一般式化为对称式,课本 3.3.3 中有说明

- (2) 点到直线的距离,课本3.3.6中有说明
- (3) 判断两条直线的位置关系,课本 3.3.4 中有说明解答:
 - (1) 为了求出 L_1 上一个点,取z = 0

 $\overline{u}_{x-y=3}$ 法向量为 $\overline{n_1}$, 3x-y+z=1 法向量为 $\overline{n_2}$

$$\overrightarrow{l_1}$$
 // $(\overrightarrow{n_1} \times \overrightarrow{n_2})$

$$\vec{n}_1 \times \vec{n}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 0 \\ 3 & -1 & 1 \end{vmatrix} = (-1, -1, 2)$$

取
$$\overrightarrow{l_1} = -(\overrightarrow{n_1} \times \overrightarrow{n_2}) = (1,1,-2)$$

又由 L_1 过 $P_1(-1,-4,0)$,得 L_1 对称式为 $x+1=y+4=\frac{z}{-2}$

(2)

$$\overrightarrow{P_{1}M} \times \overrightarrow{I_{1}} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 4 & -1 \\ 1 & 1 & -2 \end{vmatrix} = (-7,3,-2)$$

$$d = \frac{\|\overrightarrow{P_{1}M} \times \overrightarrow{I_{1}}\|}{\|\overrightarrow{I_{1}}\|} = \frac{\sqrt{62}}{\sqrt{6}} = \frac{\sqrt{93}}{3}$$

(3)
$$L_2$$
过 P_2 (-1,1,0),方向向量为 $\overrightarrow{l_2}$ = (1, -2,2)
$$[\overrightarrow{P_1P_2} \quad \overrightarrow{l_1} \quad \overrightarrow{l_2}] = \begin{vmatrix} 0 & 5 & 0 \\ 1 & 1 & -2 \\ 1 & -2 & 2 \end{vmatrix} = -20$$
 L_1 , L_2 异面

第一章

①裸布例 1,25,解答位于同一页

证明: $n(n \ge 2)$ 阶 Vandermonde(范德蒙德)行列式

$$D_{n} = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ a_{1} & a_{2} & \cdots & a_{n} \\ a_{1}^{2} & a_{2}^{2} & \cdots & a_{n}^{2} \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ a_{n-1} & a_{n-1}^{n-1} & \cdots & a_{n-1}^{n-1} \end{vmatrix} = \prod_{1 \leqslant j < i \leqslant n} (a_{i} - a_{j})$$

② 112 课后题,(A) 2,解答略

(2)
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (a+b+c)(b-a)(c-a)(c-b)$$
$$\begin{vmatrix} a^2 & (a+1)^2 & (a+2)^2 & (a+3)^2 \\ b^2 & (b+1)^2 & (b+2)^2 & (b+3)^2 \end{vmatrix}$$

① N阶矩阵 B 元素至为1、证明 (I-B) = I- 点 B

$$B^2 = \begin{bmatrix} n & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = n B$$

② 设矩阵
$$A = (a_{ij})_{3\times3}$$
满足 $A^* = A^T$, 若 a_{11}, a_{12}, a_{13} 为 3 个相等的正数,则 $a_{11} =$

$$I | A^* = A^* = AA^* = AA^* = AA^* = AA^*$$

$$AA^{*} = \begin{vmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{vmatrix} AA^{T} = \begin{vmatrix} |a_{11}^{2} + a_{12}^{2} + a_{13}^{2}| \\ |a_{11}^{2} + a_{12}^{2} + a_{13}^{2}| \\ |a_{11}^{2} + a_{12}^{2} + a_{13}^{2}| \end{vmatrix}$$

4. 设 $P = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -2 \\ 1 & -1 & 1 \end{bmatrix}$, $D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$, 3 阶矩阵 A 满足 AP = PD, 求 $\varphi(A) = A^8 (5I - 1)$

$$\varphi(A) = PD^{8} P^{-1} (SI - 6PDP^{1} + PD^{2} P^{-1})
= PD^{8} P^{-1} (SPP^{1} - 6PDP^{1} + PD^{2} P^{-1})
= PD^{8} P^{-1} P (5 - 6D + D^{2}) P^{-1}
= PD^{8} (D - I)(D - 5I)
- (1 - I) I I$$

$$\lambda=-1$$
 , 则 $r(A)=2$, $r(\overline{A})=3$ 的逻辑 $\lambda=4$, 则 $r(A)=r(B)=2$

设方阵 A 满足 $AA^{T} = I$,且 det(A) < 0.证明:det(A+I) =

$$\therefore AA^{T} = I \qquad \therefore |A| \cdot |A^{T}| = |A|^{2} = 1$$

$$\therefore A B^{T} = I \qquad \therefore (A+I) A^{T} = A^{T}+I$$

$$\therefore A = A^{T}, I = I^{T} \therefore A + I = (A + I)^{T}$$
$$\therefore |A + I| \cdot |A^{T}| = |A + I|$$

⑤ 设
$$A$$
 为 $m \times n$ 实矩阵,证明: $A = O \Leftrightarrow A^T A = O$.

$$\mathcal{A}^{\mathsf{T}} A = \left(\begin{array}{c} \sum_{1=1}^{m} \alpha_{11}^{1} & \sum_{1=1}^{m} \alpha_{12}^{1} \\ \sum_{1=1}^{m} \alpha_{1m}^{1} \end{array} \right) = 0$$

⑥ 证明 $\mathcal{R}\left(\begin{pmatrix} A & O \\ O & B \end{pmatrix}\right) = \mathcal{R}(A) + \mathcal{R}(B)$

则存在可逆矩阵 P1. P2. Q1. Q2.

$$\therefore \begin{pmatrix} A & O \\ O & B \end{pmatrix} = \begin{pmatrix} P_1 & O \\ O & P_2 \end{pmatrix} \begin{pmatrix} O & O \\ O & Tr_1 & O \\ O & O & O \end{pmatrix} \begin{pmatrix} Q_1 & O \\ O & Q_2 \end{pmatrix}$$

$$\therefore R\left(\begin{pmatrix} A & O \\ O & B \end{pmatrix}\right) = R\left(\begin{pmatrix} P_1 & O \\ O & P_2 \end{pmatrix}, \begin{pmatrix} O & O \\ O & I_{r_1} & O \\ O & O & O \end{pmatrix}, \begin{pmatrix} Q_1 & O \\ O & Q_2 \end{pmatrix}\right)$$

$$= \mathcal{R}\left(\left(\begin{smallmatrix} 0 & 0 & 0 \\ 0 & \mathbf{Ir}, & 0 \\ 0 & 0 & 0 \end{smallmatrix}\right)\right)$$

$$(A^*)^* = |A^*| \cdot (A^*)^{-1}$$

$$= |A|^{n-1} \cdot (|A|A^{-1})^{-1}$$

$$= a \cdot |A|^{n-2}$$

3. 设实方阵
$$A = (a_{ij})_{4x4}$$
満足:(1) $a_{ij} = A_{ij}$,其中 A_{ij} 是 a_{ij} 的代数余子式($i,j = 1,2,3,4$)
(2) $a_{44} = -1$.

$$\frac{4}{2} \int_{0}^{2} \left(\frac{1}{2} \right) dt = \frac{1}{2} \int$$

2. 设有
$$n(n>1)$$
 维行向量 $\alpha=(1,1,\cdots,1)$, I 为 n 阶单位矩阵.求 n 阶矩阵 $A=I-\frac{1}{n}\alpha^{\mathsf{T}}\alpha$ 的秩

$$A = I - \frac{1}{n} A^T A$$

$$\therefore \ \ \mathsf{N} \ \mathsf{A} = \ \mathsf{N} \ \mathsf{I} - \mathsf{A}^\mathsf{T} \mathsf{A}$$

$$\therefore \Gamma(nA) = \Gamma(A) = \Gamma(nI - A^TA) = \Gamma\begin{pmatrix} n-1 & -1 & -1 & -1 \\ -1 & n-1 & -1 & -1 \end{pmatrix}$$

$$n = \frac{1}{1 - n}$$

$$:: Y(A) = h$$

第3章

① 第3章习题,第4题

重 直线 L 过点 $P_0(1,0,-2)$, 与平面 3x-y+2z+1=0 平行 , 与直线 $\frac{x-1}{4}=\frac{y-3}{-2}=z$ 相交 , 求 L 的 对称式方程.

○第3章习题,第6题

6. 设有点 $P_0(2, -3, -1)$, 直线 $L_1: \frac{x-1}{-2} = \frac{y+1}{-1} = z.(1)$ 求 P_0 到 L_1 的垂足点 $P_1; (2)$ 求过 P_1 目 L_1 垂直相交的直线的对称式方程: (3) 求 P_2 关于 L_1 的对称点 P_3 .

恨 P'P,=入了, 例 P,(1-2人,-入-1,)

$$(2)$$
; \overrightarrow{PoP} , $(-\frac{2}{3}, \frac{13}{6}, \frac{5}{6})$, \overrightarrow{Po} $(2, -3, -1)$

③第3章日题,第7题

7. (1) 已知 $\overline{MP} \perp \overline{MA}$,将 \overline{MP} 绕 \overline{MA} 右旋角度 θ 得 \overline{MP}_1 ,记 $e = \frac{\overline{MA}}{\parallel \overline{MA} \parallel}$,试用 e , \overline{MP} 及

 θ 表出 MP_1 ;

(2) 设 O, P, A 是 3 个不同点, 将 \overrightarrow{OP} 绕 \overrightarrow{OA} 右旋角度 θ 得 \overrightarrow{OP}_1 , 记 $e = \underbrace{OA}_{\parallel \overrightarrow{OA} \parallel}$, 试用 e, \overrightarrow{OP} 及 θ 表出 \overrightarrow{OP}_1

如图, 注Pi向mp作PiH LMP

 $P : \overrightarrow{MH} = |\overrightarrow{MP}| \cdot \omega_S \theta \cdot |\overrightarrow{HP}| = |\overrightarrow{MP}| \cdot Sin \theta$

HPI = MPI Sind Ex MP = Ex MP - Sind

田课本 Pino页结论

对于 3 个向量 $a = (x_1, y_1, z_1), b = (x_2, y_2, z_2), c = (x_3, y_3, z_3),$ 由定理3.1.2,有 a,b,c 共面⇔存在不全为零的常数 k_1,k_2,k_3 , 使得 $k_1a+k_2b+k_3c=0$ ⇔存在不全为零的常数 k_1,k_2,k_3 ,使得 $(x_1k_1 + x_2k_2 + x_3k_3 = 0),$

$$\begin{cases} y_1 k_1 + y_2 k_2 + y_3 k_3 = 0, \\ z_1 k_1 + z_2 k_2 + z_3 k_3 = 0. \end{cases}$$

上面的方程组可看成是以 k_1,k_2,k_3 为未知量的 3×3 齐次线性方 解,故由 Cramer 法则的推论,得

$$a,b,c$$
 共面 \Leftrightarrow $\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} = 0.$

(3) 课后题 14

解得七=10, P(10,10,10)

① 312课后题 (B) 2

依题意, 极Pl to to to 代入 4x-7y tsz-20=0

在空间直角生标系中, A(XI, 1/1, O) B(X2, 1/2, O) C(X3, 1/3, O)

以了(01011) ·· VABC-D= 6 AB X AZ X AD = 3 SOABC

2. 证明:以 $A(x_1,y_1),B(x_2,y_2),C(x_3,y_3)$ 为顶点的

的绝对值。

① 3.3 课后题 (A) 10

10. 求通过 z 轴且与平面 $2x+y-\sqrt{5}z-7=0$ 的夹角为 $\frac{\pi}{3}$ 的平面方程.

由题意,设所求平面下法向量可(X,y,0)

所给平面Ti。: 2X+y-152-7=0 这同量前(2:1),-15)

$$\therefore \frac{\vec{m} \cdot \vec{k}}{|\vec{m}| |\vec{k}|} = -\frac{1}{2} \Rightarrow \frac{2x + y}{\sqrt{x^2 + y^2} \cdot \sqrt{10}} = -\frac{1}{2} \Rightarrow \frac{4x^2 + 4xy + y^2}{101(x^2 + y^2)} = \frac{1}{4}$$

y=0 时为解, y≠0 时有 3(分)2+8分 - 3 = 0

· 英=-3或量 取成(3,-1,0)或(1,3,0)

· 丌过(0,0,0) 二方程为3x-y=0 或 x+3y=0

图3.3 课后题 (B).

求常数 k 的值,使下列 3 个平面过同一直线:

 $\pi_1: 3x + 2y + 4z = 1; \quad \pi_2: x - 8y - 2z = 3; \quad \pi_3: kx - 3y + z = 2.$

并求此直线的对称式方程.

$$\{T_1: 3x+2y+42-1=0\}$$
 得直线 1 方程 $\frac{x}{14} = \frac{y+\frac{1}{2}}{5} = \frac{z-\frac{1}{2}}{-13}$

上1的方向同量 → (14, 5, -13), 形法同量 オ(k,-3,1)

注意这里的充分与必要关系

行列	な	客	£2†	算
				1

1. 行和相等: 2019~2020-11.	.	7	2	
1. 行轮相等: 2017~2020、I. 设 x, y, 2为两两互不相同的数,则行列式 Xty+Z=0	X+9 Y+Z	×	ײ	=0 於意學程
x+y+z=0	2+X	y	y2	

是不是很奇怪,这两个不超了约?

企业和3行车抽气的抽心品势,构造一列抽风数(把第2列加到第一列)

不批行到了范德蒙德行列式吗? 注系转载后第二行的顺序哦

注与互对的各件哦!

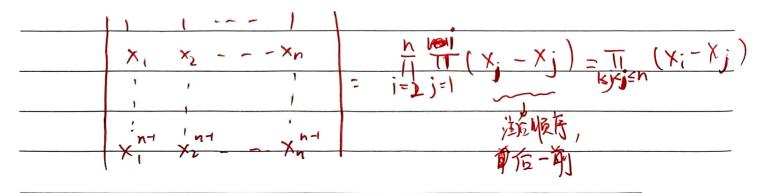
2. 范德蒙德行列式: 2020~2021 三.2.

计算行列式		1) >h	1	1	}
	D=	2+302 404502	46+262	4c+5c ²	4d+5d2	T.
		ba+7a3	662+763	bc2+7c3	bd2+10	
	= 10	(a-b) 7	(d-b)cd-	c) (C-a)	(-6)	b-a)

即是一个范德苏德(最高器通话给提示了哦)

低暑次好消去呢?有没有记行行的难题的推废呢?

最后补一个范围家属的公式吧!



3.代数余子式补充算法: 2018~20	² 19 = .	6.
----------------------	---------------------	----

区知所行列式D的值为 $a \neq 0$, 且 D的每行元款和新等于常数 b, 以I D的过到 $a \neq 0$ $b \neq$

太明至3是不是:

来列代级武之和二把这列生铁成1的行列式的值

$$\begin{vmatrix} \alpha_{i1} & -\cdots & -\alpha_{in} \\ \alpha_{i2} & -\cdots & -\alpha_{in} \end{vmatrix} = \begin{vmatrix} \alpha_{i1} & -\cdots & \alpha_{in} \\ \alpha_{i2} & -\cdots & -\alpha_{in} \end{vmatrix} = \begin{vmatrix} \alpha_{i1} & -\cdots & \alpha_{in} \\ \alpha_{i2} & -\cdots & -\alpha_{in} \end{vmatrix} = \begin{vmatrix} \alpha_{i1} & -\cdots & \alpha_{in} \\ \alpha_{in} & -\cdots & \alpha_{in} \end{vmatrix} = \begin{vmatrix} \alpha_{i1} & -\cdots & \alpha_{in} \\ \alpha_{in} & -\cdots & \alpha_{in} \end{vmatrix} = \begin{vmatrix} \alpha_{i1} & -\cdots & \alpha_{in} \\ \alpha_{in} & -\cdots & \alpha_{in} \end{vmatrix}$$

几列金液

4.对称行列式: 201822019 三.1.

计算行列式

最麻烦也正面 冰葉, 逐列消去, 适时利用代数争式的了

\sim	
1 12	$\Gamma \Delta$
レロ	\cup

S. 不具是行列式	· 2019~2020 =. 1.
-----------	-------------------

已知x1,x2, X3 为好 X3+px+q=0 的三个根

	Xx X3	=	0
X	×3 ×1		
X3	$X_1 X_2$		
-			

这提真正的行私的等, 企业果你会之元韦达,容第一例全是 X,+X+X3 即于,

学案是不是已经有了呢? 0×3+6×2+6×+d=0

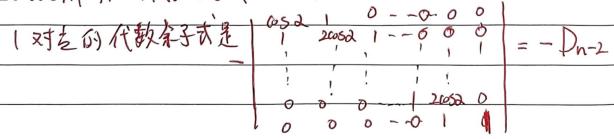
= 7 X,+ X2 +X3 = - a $x_1x_2 + x_2x_3 + x_3x_1 - \frac{c}{a}$ $x_1x_2x_3 = -\frac{d}{a}$

6. 你还记得数归也可以用吗?节P217.(3)

1	८०५८			0	100		
Dn=	- 0	20% 1	cosd 1	0	0	11	wsni
	;	; D	6 6		2052		

热键哪里可以通归? 在下的

2 COSA所对它的代数等于就是 Dn-1



		۱ ,	· ^ \		n(n-1)
7 最后一个小山路:	dii ain		>0.1941, OLAHU	3 (-)) ,
THE THINK	a, a.	1/	(lear 0)		
	VON VON		The state of the		

矩阵:

1.矩阵幂次性质:2019~2020 -.2.

______设A为的阶分阵(n>3),若A3=0,则下式中未的成立的是_____A

A.
$$A = 0$$
 B. $(A^{T})^{3} = 0$ C. $A^{4} = 0$ D. $|A| = 0$

A是不是过于露港了 (A= DI) (I为r所为阵))

$$B: (A^T)^n = (A^n)^T \quad (AB)^T = B^T A^T)$$

C: 日左右乘A

D det (AB)= det (A) · det (B) : $det(A^h) = (det(A))^h$

李道大百阵还有一条比较;(A+B)™=A™+B™

2.转置矩阵复杂计算 2019~2020 三.4.

矩阵Ame A(I-C-B)TCT=I. 求A.

$$= A(C-B)^T$$

= A-1=(C-B) = 12 TETE M33 Stc?

Ó:	ය		*
1		•••	

3.一个小技巧,说了就剧选了 2019~2020 三.6.
返A=(Q;j)3x3 为非罗实矩阵, Aij为Qij的代数系子式,且Qij+Aij=0
(ij=1,2,3). (1)
(1) A = -1
小技巧就是什数系式构成件随矩阵
小技巧就是/代数系式构成件随矩阵 : A* = -a11 - a12 - a12 = - AT = - A
1 - 1 1 2 2 3 1 1 1 1 1 1 1 2)
这下(人) 玩行和中 0 下一(人)
(A (おいうか) 4 P O V T () () () () () () () () () (
$\frac{A^{+} - A^{-}}{A^{+}} = -A^{-} + A^{-} + A$
4.(逆)矩阵复杂计算 2019~2020 二、3.
这A为103所为样,且 A =2,则 (之A*)-1-3A =-16
$\frac{\left(\frac{1}{2}A^{*}\right)^{-1}}{\left(\frac{1}{2}A^{*}\right)^{-1}}$
$(A^*)^{-1} = (A A^{-1})^{-1} = \frac{1}{2} A$
3文丰英花云= -2 A , 为行!
$\frac{1}{ A } \left(\frac{1}{k} A \right)^{-1} = \frac{1}{k} A^{-1}$

7	
	ATA
1	1476
J	

创造機:你有好好写作业吗?书P59 1.

超的ATA是一个数呀!

你沒有发现 下門截的条件呢?

当然是分野不为零: PrATQ=一以可!

 $\frac{\left(\frac{1}{2}A\right)^{2} = \left(\frac{1}{2}\right)^{3}(A^{2})}{\left(\left(\frac{1}{2}A\right)^{4}\right)^{-1} = 8(A^{2})^{-1} = \frac{8A}{|A|}}$

 $\frac{|A|}{|A|} = \frac{|A_1|}{|A_2|} = \frac{|A_1|}{|A_2|} = \frac{1}{2}$

化为=>B=6(2[-A)

Date / / its	3一题,后留空63	,抢救~	
6.初等交换 201822019 三.6.			
Exe n所 x E 阵 A = / 2 2 2 - 0 1 1 -	11 (1)	KA-1;(2)求A+5	有法代数针成和
	/ '(nA-1	= 10-00	(2)
111从下在上依次组成,揭广经阵在	SMJ不就行到ATS	9?	
(2) 有A ⁻¹ ,又: A -2, A* 計有: 式上字的为法体、 含A [*] = 设矩阵 A= A 1 卷有了	了一样一下玩好,	也现外分分	铁镇诸城代数针
2020~2021 9.	2 BAT = 0 (1+	()	10.00
设矩阵 A= (五十 1) 苍有了	三角英e阵 P和上三	角可连旋阵及使	上PAQ为对条件
DIPATHIRTA A.(010)	(101) B (2)	(10), (100) (10), (100)	
$ \begin{array}{c} \left(\begin{array}{c} 100 \\ 240 \\ -321 \end{array}\right), \left(\begin{array}{c} 101 \\ 013 \\ 001 \end{array}\right) D. \left(\begin{array}{c} 101 \\ 01 \\ 00 \end{array}\right) $	0 (2-3)		
比较基础	出的初建铁、号	成PAQ的开	了,大兵仍整
7. 矩阵解治程:			
Cramer 12121: 2019-2020	۵۱.		
造物的无线性的组 AX=	5 ,其 A为主对有	矩阵,且	
$A = \begin{cases} 2\alpha & 1 & 0 & 0 & 0 \\ \alpha^2 & 2\alpha & 1 & 0 & 0 \\ 0 & \alpha^2 & 2\alpha & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0$	$ \begin{array}{c c} 0 \\ 0 \\ 1 \\ \hline \end{array} $ $ \begin{array}{c c} X_1 \\ \hline X_2 \\ \hline \end{array} $	$\begin{array}{c} 7 = 0 \\ 0 \\ 0 \\ 0 \end{array}$	
L 0 0 0 0 a ²	20		~
(1) 1201 A =(n+1) ah; (2) a	为行场的方流的	打塑剂唯一的(,	有在中的一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个
Cramer it 121: 1/	11=00+ 有批学的	1(无穷个)	1 X = M
10	1 (40 1) 只有重领	·	(N+1)a
नेद	齐火铁胜松延!	L	x2=0; (-va
	7 139	D.	

ate	/	/				
短阵所	3组:20	20~202 =	. 4. A:(1.2.)	, 1	1)	
红矩阵)	X滿足蛇	年3程 AX=F	3 其 (254) B= (0	I), MX=	
	E	-1) , B=(0		
	门来	A <u>n-lo</u>	F1 FM 81 1			
			(通例为)	١ ١		
	X= 2	07				
	X= 2	1				
,	[-)	1				

8. 实巨阵的失失	2018 22019	三,4.
-----------	------------	------

rd

在日本讨论《与日的关》的不多阶、《一日

(1) r(A)=r的記事条件正存在M×r的列满铁矩阵G和r×n的行渐铁矩阵H, 使 A=GH

(1)
$$PAQ = \begin{bmatrix} I_r & O \\ O & O \end{bmatrix}$$

г	_	-	-	
L	٠,	۲		ı
Ľ	Э	1	•	ı
•	4	Г	•	ı

白	五	,
_	-4	-

1.方向自主: 2020~2021 二.3

EM (1-2-) 34 76 X 24-22 +3-0

已知何至方与前=(1,2,-2)平行,且方与乙种正历史为为钱舟,则方面方解附 $-\frac{1}{3}$, $-\frac{2}{3}$, $\frac{2}{3}$

$$\cos \lambda = \frac{\alpha_x}{||\vec{\alpha}||} = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$$

2. 点别平面短高: 2020 ~2021 = .2.

4.点 M(1,2,3)到% x -24+22+3=0的距离为___2

$$d = \frac{|Ax+By+Cz+D|}{\int A^2+B^2+C^2}$$

3. 旬美高问处: $2018 \times 2019 = .5$. 证明值线 $L_1: \frac{x+1}{3} = \frac{y+1}{2} = \frac{z+1}{1}$ 与 $L_2: X-4 = \frac{y+5}{-3} = \frac{z-4}{2}$ 这引一个 并求这两个重线的交点全标及的在中面方程。

找其上两里 P1 , P2

Ti. Pipe, Ti 类的合)[Li Ti Pipe]=0

万= T1 x T2 解出中的(主法式的组建交生)

(2,1,0) Fiz 7x-54-11z=9

4. 点与直线/直线与直线: 2019~2020 三、3.

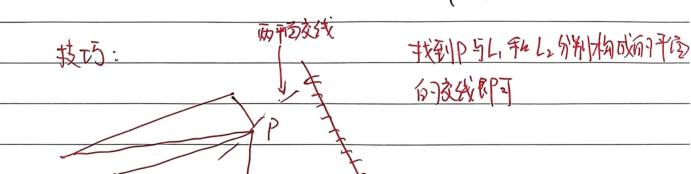
以有两条直线 $L_1: \{x-y=3\}$ 乐 $L_2: \frac{x+y}{y} = \frac{y-1}{-2} = \frac{z}{z}$ 乐M(1,0,-1)

(1) 求人的对称抗强;(2) 求点 外到人的距离 (3) 研究人,和人的逻辑关系

(1) 取一点即可轻和松集出

13) 4 4

距抗?:
$$d = | \overrightarrow{P_1P_2} | \overrightarrow{a_1} \times \overrightarrow{a_2} |$$



6.求体积:2019~2020二.分.

求以A(1,1,1), B(2,0,1), C(0,0,1), D(1,3,2) 加速的工作标 $V_{\uparrow} = \left[\overrightarrow{\Delta}_{1}, \overrightarrow{\Delta}_{2}, \overrightarrow{\Delta}_{3} \right] \qquad V = \frac{1}{6} V_{\uparrow} + \frac{1}{6} V_{\downarrow} + \frac{1}{6} V_{$