西	安	交	通	大	学	考	试	题
•	_	_	-	_			· A	

课 程 <u>高等数字(Ⅰ.Ⅱ</u>)

系 别 _____ 考试日期 2016年11月6日

专业班号 _____

一、填空(每小题3分,共15分)

1 若
$$f(x) = \begin{cases} \frac{\cos x}{x+2}, & x \ge 0 \\ \frac{\sqrt{a} - \sqrt{a-x}}{x}, & x < 0 \end{cases}$$
 有可去间断点 $x = 0$,则 $a = _____.$

3 曲线
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = t^3 + 9t \\ y = t^2 - 2t \end{cases}$$
 确定,则 $y = y(x)$ 的凸区间是_____.

4 极限
$$\lim_{x\to 1} \frac{x^x-1}{x \ln x} =$$
______.

5 曲线
$$y = x \ln\left(e + \frac{1}{x}\right)(x > 0)$$
 的渐近线方程为______.

二、单项选择 (每小题3分,共15分)

- 1. 设 f(x), $\varphi(x)$ 在 $(-\infty, +\infty)$ 内有定义, f(x) 为连续函数且 $f(x) \neq 0$, $\varphi(x)$ 有间断点,则(
 - A. $\varphi(f(x))$ 必有间断点 B. $(\varphi(x))^2$ 必有间断点
 - C. $f(\varphi(x))$ 必有间断点 D. $\frac{\varphi(x)}{f(x)}$ 必有间断点

2 设 f(x) 为可导函数且满足 $\lim_{x\to 0} \frac{f(1)-f(1-x)}{2x}=-1$,则过曲线 y=f(x) 上点

(1, f(1)) 处的切线的斜率为()

B. -1 C. 1 D. -2

3. 若 $\lim_{x\to\infty} \frac{f(x)-f(a)}{(x-a)^2} = -1$,则在点 x = a 处 ().

A. f'(a) 存在,且 $f'(a) \neq 0$

B. f(x) 取得极大值

C. f(x) 取得极小值

D. f(x) 的导数不存在

4. 设
$$f(x) = \begin{cases} \frac{1-\cos x}{\sqrt{x}}, & x>0\\ x^2g(x), & x\leq 0 \end{cases}$$
, 其中 $g(x)$ 是有界函数,则 $f(x)$ 在 $x=0$ 处 ().

A. 极限不存在

B. 极限存在,但不连续

C. 连续,但不可导

D. 可导

5. 下列命题中正确的是().

A. 若 $f'(x_0) = 0$,则 $(x_0, f(x_0))$ 一定是曲线 y = f(x) 的拐点.

B. 若 $f'(x_n) = 0$, 则 f(x) 在 x_n 处一定取极值.

C. 若 f(x) 可导,且在 x_0 处取得极值,则 $f'(x_0) = 0$.

D. 若 f(x) 在 [a,b] 上取得最大值,则最大值一定是 f(x) 在 (a,b) 内的极大值.

- 三、计算下列各题(每小题9分,共45分)
 - 1. 求极限 $\lim_{x\to 0} \frac{\arctan x x}{\ln(1 + 2x^2)}$.

2. 设
$$y = \tan 2x + 2^{\sin x}$$
, 求 $dy \Big|_{x=\frac{\pi}{2}}$.

3. 设函数
$$y = y(x)$$
 由 $e^{y} + 6xy + x^{2} - 1 = 0$ 确定,求 $y''(0)$.

4. 讨论函数
$$f(x) = \begin{cases} \frac{x(1+x)}{\cos \frac{\pi}{2}x}, & x < 0 \\ \sin \frac{1}{x^2 - 4}, & x \ge 0 \end{cases}$$
 的连续性,并确定其间断点的类型.

5. 设函数
$$f(x) = \begin{cases} \frac{g(x) - e^{-x}}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, 其中 $g(x)$ 具有二阶连续导数,且 $g(0) = 1$,

g'(0) = -1. (1) 求 f'(x); (2) 讨论 f'(x) 在 $(-\infty, +\infty)$ 上的连续性.

四、(13 分)设 $f(x) = \frac{x^2}{2(x+1)^2}$,求(1)函数 f(x) 的单调区间和极值;(2)曲线 y = f(x)

的凹凸区间和拐点.

五、证明题 (每小题 6 分, 共计 12 分).

1. 设 f(x) 在 [-1,1] 上三阶可导,且 f(-1)=0, f(0)=0, f(1)=1, f'(0)=0, 证明: 存

在 ξ ∈(-1, 1), 使 $f'''(\xi)$ ≥3.

2. 设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,且 f(a) = f(b) = 1,试证:存在 $\xi, \eta \in (a,b)$,使 $e^{\xi-\eta} (f(\eta)-f'(\eta))=1$.

本科生课程考试试题标准答案与评分标准 ×II 果程名称: 3世纪》(上中)课时: ____考试时间: 2016年[[月6]日 $-\frac{(3'\times 5=(5'))}{1. \ \alpha=1. \ 2. \ \alpha=-2. \ 3. \ (-10,54). \ 4. \ 1. \ 5. \ y=\chi_{t}=\frac{1}{2}.$ 1. p. 2. p. 3. B. 4. D. 5. C = 1. [37] = $\lim_{\chi \to 0} \frac{\arctan \chi - \chi}{2\chi^3} = \lim_{\chi \to 0} \frac{1}{6\chi^2} = \lim_{\chi \to 0} \frac{1}{6\chi^2} = \frac{1}{6\chi^2} = \frac{1}{6\chi^2}$ 2. $dy = [2 \sec^2(2x) + 2 \sin^2(\ln 2) \cos x] dx (?)$. $dy|_{x=\frac{\pi}{2}}$ 及 1° 义=2. ling f(1) 不管。 义=2 旅商的野山南南山东 (2') 2° 1=0. 1=0 f(x)=-sin+, 1=0 f(x)=0. X=0 为张兴问部2 3° $\chi=-1$ $\lim_{x\to -1} f(x) = \lim_{x\to -1} \lim_{x\to -1} \frac{(t+)t}{\omega_{1}} = -\frac{z}{\pi} = -\frac{z}{\pi}$ 4° X=-(水山)、龙山山 为两间断之来第二类、(P') 5. 0 $f'(0) = \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{g(x) - e^{-x}}{x^2} = \frac{g'(0) - 1}{2}$ (4) $f'(x) = \begin{cases} \frac{\left[g'(x) + e^{x}\right]x - \left[g(x) - e^{x}\right]}{x^{2}}, x \neq 0. \\ \frac{g''(x) - 1}{2}, x \neq 0. \end{cases}$ (2) $\lim_{x\to 0} f'(x) = \lim_{x\to 0} \frac{x[g''(x) - e^{x'}]}{2x} = \frac{1}{2}[g''(0) - 1] = f'(0)$ E/2 (9')

$$\frac{1}{2} = \frac{1}{2} = \frac{1$$