

 $\iint_{(\partial\Omega)} f(x,y,z) \frac{\partial f}{\partial n} dS = \iint_{(\Omega)} \left[\overrightarrow{s}_{x} + \overrightarrow{R} \overrightarrow{S} + \overrightarrow{S} +$

 $\operatorname{grad} f(x_0) = \nabla f(x_0)^{a} \int_{x_0}^{x_0} \int_{x_0}^{x_0$

2024 高数下期末试题

一、单选题

1. 设函数 $f(x,y) = \begin{cases} \frac{5x^2y}{x^4 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0, \end{cases}$ 则 f(x,y) 在点 (0,0) 处 (0,0) 处 (0,0) 化 (0,0) 处 (0,0) 化 (0,0) 处 (0,0) 化 (0,0)

A. 连续, 偏导数存在;

B. 连续, 偏导数不存在;

C. 不连续, 偏导数存在;

D. 不连续, 偏导数不存在.

2. 设 (D) 为圆域 $x^2 + y^2 \le R^2$, (D_1) 为 (D) 在第一象限的部分, 则区域 (D) 上的二重积分 $\iint_{(D)} (x+y)^2 dx dy 的最简表达式是 ().$

A. $4 \iint_{(R_1)} y^2 dx dy;$

C. 16 $\iint_{(D_x)} x^2 dx dy$; D. 4 $\iint_{(D_x)} (x^2 + y^2) dx dy$.

3. 设椭圆 (C): $2x^2 + 3y^2 = 6$ 的周长为 l, 则曲线积分 $\oint_{CC} \left(\frac{x^2}{3} + \frac{y^2}{2} - 5x\right) ds$ 的值为 ().

4. 下列正项级数收敛的是().

A. $\sum_{n=0}^{\infty} (\sqrt{n+1} - \sqrt{n})$; B. $\sum_{n=0}^{\infty} \frac{1}{n^2 - 1}$; C. $\sum_{n=0}^{\infty} \frac{1}{\sqrt{2n^2 + 1}}$; D. $\sum_{n=0}^{\infty} \frac{n-1}{2n}$.

5. 对于二元函数 z = f(x, y). 下列说法正确的是 ().

A. 若函数可偏导,则一定连续;

B. 若函数可微,则一定存在偏导数,且偏导数连续;

C. 若函数两个偏导数都存在,则一定可微;

D. 若函数两个混合偏导 $f_{xy}(x,y)$ 和 $f_{yx}(x,y)$ 连续, 则 $f_{xy}(x,y) = f_{yx}(x,y)$.

6. 若幂级数 $\sum_{n=0}^{\infty} a_n(x-1)^n$ 在 x=-1 处收敛. 则该级数在点 x=3 处 ().

A. 条件收敛;

B. 绝对收敛; C. 发散;

D. 敛散性不能确定.

二、填空题

2. 设 $u = x^2z + \frac{1}{2}y^2z - \frac{1}{2}z^3$, 则 A = grad u 的散度 div A = _____.

3. 曲面 $z = x^2 + y^2$ 上一点处与平面 2x + 4y - z = 0 平行的切平面方程为_

1

- 4. 幂级数 $\sum_{n=1}^{\infty} \frac{(x-3)^n}{\sqrt{n}}$ 的收敛域为______.
- 5. 二重积分 $\iint_{(D)} y \left[1 + x e^{\frac{1}{2} (x^2 + y^2)} \right] dx dy$ 值为______. 其中 (D) 是由直线 y = x , y = -1 及 x = 1 所围成的区域.
- 6. 三重积分 $\iiint_{(V)} z^2 \, dV$ 的值为_____. 其中 $(V) = \{(x, y, z) \mid x^2 + y^2 + z^2 \leqslant R^2\}$.

三、计算题

- 1. 设 $z=x^3f\left(xy,\frac{y}{x}\right),f$ 具有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial y^2}$ 及 $\frac{\partial^2 z}{\partial x\partial y}$.
- 2. 计算 $\int_{(\Sigma)}(x+y+z)\mathrm{dS}$,其中曲面 (Σ) 为圆锥面 $z=\sqrt{x^2+y^2}(0\leqslant z\leqslant 1)$.
- 3. 计算曲面积分 $\iint_{(\Sigma)} \frac{x^2ydy \wedge dz + \left(e^z xy^2\right) dz \wedge dx + \left(z^2 + 2\right) dx \wedge dy}{z + x^2 + y^2}$, 其中 Σ 为曲面 $z = 9 x^2 y^2$ $(z \ge 0)$,取上侧.
- 4. 计算 $\oint_{(\Gamma)} y^2 \, dx + xy \, dy + xz \, dz$, (Γ) 为柱面 $x^2 + y^2 = 2y$ 与平面 y = z 的交线,从 z 轴正向看为顺时针方向.
- 5. 将函数 $f(x) = \begin{cases} -x, -\pi \le x < 0 \\ x, 0 \le x \le \pi \end{cases}$ 展开成傅里叶级数,并利用它计算级数 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ 的和.
- 6. 设 f(x) 在 $(-\infty, +\infty)$ 内有连续的导数, 计算曲线积分 $\int_{(L)} \frac{1+y^2 f(xy)}{y} dx + \frac{x}{y^2} [y^2 f(xy) 1] dy$, (L) 为从点 $A\left(3, \frac{2}{3}\right)$ 到点 $B(1, \frac{2}{3})$ 的直线段.

四、

已知函数 z = f(x,y) 的全微分 $\frac{\mathrm{d}z}{\mathrm{d}z} = 2x \, \mathrm{d}x - 2y \, \mathrm{d}y$,并且 f(1,1) = 2 ,求 f(x,y) 在椭圆域 $D = \left\{ (x,y) \, \middle| \, x^2 + \frac{y^2}{4} \leqslant 1 \right\}$ 上的最大值和最小值.

五、

若函数 u=u(x,y), v=v(x,y) 在平面区域 $(D): x^2+y^2 \le 1$ 上具有一阶连续偏导数,向量 $\mathbf{F}=vi+uj, \mathbf{G}=\left(\frac{\partial u}{\partial x}-\frac{\partial u}{\partial y}\right)i+\left(\frac{\partial v}{\partial x}-\frac{\partial v}{\partial y}\right)j; L$ 为 (D) 的边界曲线,当点 $(x,y)\in L$ 时, $u(x,y)\equiv 1, v(x,y)\equiv y$,试证明二重积分 $\iint_0 \mathbf{F}\cdot\mathbf{G}\ \mathrm{d}\sigma=-\pi$.

2023 年西安交通大学工科数学分析试题

本试卷共 6 页, 共计四个大题。全卷满分 100 分, 考试用时 150 分钟。

一、单选题: 本题共 5 小题, 每小题 3 分, 共 15 分。

1. 己知
$$f(x,y) = e^{\sqrt{x^2+y^4}}$$
, 则 ()

A.
$$f_x(0,0)$$
 存在, $f_y(0,0)$ 不存在

B.
$$f_x(0,0)$$
 不存在, $f_y(0,0)$ 存在

C.
$$f_x(0,0), f_y(0,0)$$
 都不存在

D.
$$f_x(0,0), f_y(0,0)$$
 都存在

2. 设
$$\Sigma$$
 为球面 $x^2 + y^2 + z^2 = R^2$ 上半部分的上侧, 则下列结论不正确的是()

A.
$$\iint_{\Sigma} x^2 dy \wedge dz = 0$$

B.
$$\iint_{\Sigma} x dy \wedge dz = 0$$

$$C. \iint_{\Sigma} y^2 dy \wedge dz = 0$$

D.
$$\iint_{\Sigma} y dy \wedge dz = 0$$

3. 设常数
$$a > 0$$
, 则级数 $\sum_{n=1}^{\infty} (-1)^n \ln \left(1 + \frac{a}{n}\right)$ 的敛散性为 ()

- A. 绝对收敛

- B. 发散 C. 条件收敛 D. 敛散性与 a 有关

4. 下列曲线的方向均为所围区域边界的正向,则计算曲线积分
$$\oint_{(C)} \frac{xdx + ydy}{x^2 + y^2}$$
 时,在下列曲线

(C) 所围区域上可直接使用格林公式的是()

A.
$$x^2 + y^2 = 1$$

B.
$$(x-1)^2 + y^2 = 1$$

C.
$$3(x-1)^2 + y^2 = 2$$

D.
$$|x| + |y| = 1$$

5. 若幂级数
$$\sum_{n=1}^{\infty} a_n (x-1)^n$$
 在 $\mathbf{x} = -1$ 处收敛, 则此级数在 $\mathbf{x} = 2$ 处 ()

- A. 发散
- B. 敛散性不能确定 C. 条件收敛
- D. 绝对收敛

二、填空题: 本题共 5 小题, 每小题 3 分, 共 15 分。

6. 已知函数
$$z = x^2y^3$$
, 则当 $x = 2, y = -1, \Delta x = 0.02, \Delta y = -0.01$ 时, 全微分 $dz =$

7. 函数
$$u = (x-y)^2 + (z-x)^2 - 2(y-z)^2$$
 在点 $M(1,2,2)$ 的方向导数最大值 =

8. 求二元函数的极限值
$$\lim_{\substack{x\to 0\\x\to 0}} \frac{\sin xy}{x} =$$

9. 曲线
$$\begin{cases} x = e^t \\ y = e^{-t} \end{cases}$$
 在 $t = 0$ 处的切线方程 = $z = \sqrt{2}t$

10. 改变二次积分的积分次序:
$$\int_{1}^{2} dx \int_{1}^{x^{2}} f(x,y)dy =$$

三、计算题: 本题共 8 小题, 每小题 7 分, 共 42 分。

11. 已知函数 z=f(x,y) 在点 (0,0) 的某个邻域内连续,且 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{1-\cos\sqrt{x^2+y^2}}=-2$. 试讨论函数 f(x,y) 在点 (0,0) 处的可微性及是否取得极值.

12. 设函数 f(u,v) 具有连续的二阶偏导数, $z = f(x^2 - y^2, e^{xy})$, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.

PKSTU

13. 在上半椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 (a > 0, b > 0, c > 0, z \ge 0)$ 及 z = 0 所围成的封闭曲面内作一底面平行于 xOy 面, 且体积最大的内接长方体, 问这长方体的长、宽、高的尺寸怎样?

14. 计算 $\iint_{\sigma} \sqrt{xy} d\sigma$, 其中 (σ) 为由曲线 xy=1, xy=2, y=x, y=4x(x>0, y>0) 所围成的平面 区域

15. 计算曲面积分 $\iint_{\Sigma} zdS$, 其中曲面 Σ 是圆锥面 $z=\sqrt{x^2+y^2}$ 介于平面 z=1 与平面 z=2 之间的部分.

16. 计算曲线积分 $\int_L \left(y + \frac{e^y}{x}\right) dx + e^y \ln x dy$, 其中 L 为平面曲线 $x = 1 + \sqrt{2y - y^2}$ 上从点 (1,0) 到点 (2,1) 的一段有向弧段.

17. 设 $f(x) = \frac{1}{4} \ln \frac{1+x}{1-x} + \frac{1}{2} \arctan x - x$, 试将 f(x) 展开成 x 的幂级数.

18. 将函数 $f(x) = 2 + |x|(-1 \le x \le 1)$ 展开成以 2 为周期的傅里叶级数, 并由此求级数 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 的和.

四、(8 分) 设 Σ 为曲面 $z=x^2+y^2(z\leqslant 1)$ 的上侧,求以下的曲面积分值

$$I = \iint_{\Sigma} (x-1)^3 \frac{dy}{dy} \wedge dz + (y-1)^3 dz \wedge dx + (z-1)dx \wedge dy$$

五、(6 分) 讨论级数 $1-\frac{1}{2^p}+\frac{1}{3}-\frac{1}{4^p}+\cdots+\frac{1}{2n-1}-\frac{1}{(2n)^p}+\cdots(p>0)$ 的敛散性.

2022 年高等数学下期末试题

一、选择题(共 5 题,每题 3 分)

1. 曲线
$$C: \begin{cases} x^2 + y^2 - z^2 = 1 \\ z = xy \end{cases}$$
 在点 $(2,1,2)$ 处的切线方程为 $()$

A.
$$\begin{cases} 2x - y + 2z = 2 \\ x - 2y + z = 1 \end{cases}$$
 B.
$$\begin{cases} 2x + y - 2z = 1 \\ x + 2y - z = 2 \end{cases}$$
 C.
$$\begin{cases} 2x - y + 2z = 1 \\ x - 2y + z = 2 \end{cases}$$
 D.
$$\begin{cases} 2x + y - 2z = 1 \\ x + 2y - z = 2 \end{cases}$$

2. 函数
$$f(x,y) = xy^3$$
 在椭圆 $2x^2 + 3y^2 \le 4$ 上的最大值为 ()

B.
$$\frac{\sqrt{2}}{2}$$

C.
$$\frac{1}{2}$$

3. 极限
$$\lim_{r \to 0^+} \frac{1}{r^2} \iint_{x^2 + y^2 \le r^2} e^{x^2 + y^2} dx dy$$
 等于

A 0 B 1 C π D 2π

A. 0

D. 2π

4. 设有向曲面 $Σ: x^2 + y^2 + (z - 1)^2 = 1, (z \ge 1)$, 定向为上侧,则第二类曲面积分

$$\iint_{\Sigma} 2xy \, dy \wedge dz - y^2 \, dz \wedge dx - z \, dx \wedge dy$$

A.
$$-\frac{5}{3}\pi$$

B.
$$-\frac{2}{3}\pi$$
 C. $-\frac{\pi}{3}$

C.
$$-\frac{\pi}{3}$$

D.
$$\frac{\pi}{3}$$

5. 已知幂函数
$$\sum_{n=0}^{+\infty} a_n x^n$$
 的收敛半径是 $\frac{2}{2}$ 则数项级数 $\sum_{n=0}^{+\infty} a_n$ 是 ()

A. 绝对收敛

B. 条件收敛

C. 发散

D. 无法确定是否收敛

一、填空题(共5题,每题3分)

1. 设函数
$$u(x,y,z)=x^{\frac{y}{z}}$$
,则在点 $(\mathbf{e},1,1)$ 处沿方向 $\boldsymbol{l}=(1,-2,2)$ 的方向导数 $\left.\frac{\partial u}{\partial \boldsymbol{l}}\right|_{(\mathbf{e},1,1)}=0$

2. 设
$$D = \{(x,y) | |x| + |y| \le 1\}$$
, 则二重积分 $\iint (x+|y|) dxdy = _____.$

3. 设
$$L$$
 为圆 $x^2 + y^2 = 4$, 则 $\int_{L} (2x^2 - 3y^2) ds = _____.$

4. 级数
$$\sum_{n=0}^{+\infty} (-1)^n \frac{(x+1)^n}{n}$$
 的收敛域为 ______.

5. 若级数
$$\sum_{n=0}^{+\infty} \frac{a^n}{n^b}$$
, $(a>0,b>0)$ 收敛,则 a 和 b 满足的条件是 ______.

三、计算题

1. 求函数 $f(x,y) = x^2(2+y^2) + y \ln y$ 的极值.

2. 计算三次积分 $\int_0^1 dx \int_0^{\sqrt{1-x^2}} dy \int_{\sqrt{x^2+y^2}}^1 xe^{z^2} dz$.

3. 设曲线 $C: 2x^2 + y^2 = 1$, 方向取逆时针方向. 求曲线积分 $\int_C \frac{(x+y)dx + (y-x)dy}{x^2 + y^2}$.

4. 计算曲面积分 $\iint\limits_{\Sigma}y^2\mathrm{d}S$, 其中 $\Sigma=\{(x,y,z)|x+y+z=1,x\geq0,y\geq0,z\geq0\}.$

5. 将 $f(x) = \arctan \frac{1+x}{1-x}$ 展开为 x 的幂级数.

6. 设 f(x) 为周期为 3 的周期函数,它在一个周期内的表达式为: $f(x) = \begin{cases} |x|, |x| \leq 1 \\ 1, 1 \leq |x| \leq \frac{3}{2} \end{cases}$,试写 出 f(x) 在一个周期内的 Fourier 级数及和函数 S(x) 的表达式,并求 $S(-2), S(3), S\left(\frac{9}{2}\right)$ 的值.

7. 设数列 $\{a_n\}$ 满足条件: $a_0 = 3$, $a_1 = 1$, $a_{n-2} - n(n-1)a_n = 0$, $(n \ge 2)$, S(x) 是幂级数 $\sum_{n=0}^{+\infty} a_n x^n$ 的和函数, 求 S(x) 的表达式.

四、设连续函数 f(x) 恒正, $\Omega = \{(x,y,z)|x^2+y^2+z^2 \leq t^2\}$, $D = \{(x,y)|x^2+y^2 \leq t^2\}$, $F(t) = \iiint_{\Omega} f(x^2+y^2+z^2) \mathrm{d} \sigma$,试判断 F(t) 在 $(0,+\infty)$ 的单调性.

五、设函数 f(x,y,z) 具有二阶连续偏导数, 而且

$$\lim_{r \to +\infty} r \left(x \frac{\partial f}{\partial z} + y \frac{\partial f}{\partial y} + z \frac{\partial f}{\partial z} - 3 \right) = 1$$

其中 $r = \sqrt{x^2 + y^2 + z^2}$. 记

$$A_n = \iiint\limits_{B(n)} \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \right) dx dy dz$$

其中 $B(n) = \{(x, y, z) | x^2 + y^2 + z^2 \le n^2 \}$. 试讨论级数 $\sum_{n=0}^{+\infty} \frac{(-1)^n}{A_n}$ 的敛散性, 若收敛, 指出收敛类型, 说明理由.

2021 年高数下期末试题

填空题

1. 曲面 $\sin^2 x + \cos(y+z) = \frac{3}{4}$ 在点 $(x, y, z) = \left(\frac{\pi}{6}, \frac{\pi}{3}, 0\right)$ 处的切平面方程是 _____

2. 设 $\sum_{n=0}^{\infty} a_n$ 条件收敛,则幂级数 $\sum_{n=0}^{\infty} \left(a_n + \frac{1}{n}\right) x^n$ 的收敛半径R等于 _______。

3. 若 \Box ²上的可微函数u(x, y)的梯度**grad** $u = (2x + e^x \sin y, e^x \cos y)$,且 $u(0, \pi) = 2$,则u(x, y) = 0

4. $\forall L: x = 2\cos t, y = 2\sin t, z = 2t(0 \le t \le \pi)$, $\iiint_L \frac{z^2}{x^2 + y^2} ds = \underline{\hspace{1cm}}$

5. 设 $f(x) = \begin{cases} 2x, & -1 \le x \le 0 \\ x^2 + 1, & 0 \le x \le 1 \end{cases}$, 将 f(x) 展开成以 2 为周期的傅里叶级数,其和函数记为 S(x),则

$$S\left(-\frac{15}{2}\right) = \underline{\hspace{1cm}} \circ$$

选择题

1. 函数 $f(x, y) = \begin{cases} \frac{2xy^2}{x^2 + y^4}, & x^2 + y^2 = 0 \\ 0, & x^2 + y^2 \neq 0 \end{cases}$ 在原点 (0, 0) 处)

(A) 连续且偏导数存在

(B) 沿各个方向的方向导数都存在,但不可微

(C) 可微

(D) 连续但偏导数不存在

2. 设空间区域 $\Omega = \{(x, y, z) | 0 \le z \le \sqrt{4 - x^2 - y^2}, x^2 + y^2 \le 1 \}$, 则 Ω 的体积等于)

(A) $4 \int_{0}^{\pi/2} d\theta \int_{0}^{1} r \sqrt{4 - r^2} dr$

(B) $\int_{0}^{2\pi} d\theta \int_{0}^{2} r \sqrt{4 - r^2} dr$

(C) $4\int_{0}^{\pi/2} d\theta \int_{0}^{1} \sqrt{4-r^2} dr$

(D) $\int_{0}^{2\pi} d\theta \int_{0}^{2} \sqrt{4-r^2} dr$

3. 设 $\Sigma: x^2 + y^2 + z^2 = a^2, z \ge 0$, 在以下四组积分中, 一组中两个积分同时为 0 的是

(A) $\iint_{\Sigma} z^2 dx dy$, $\iint_{\Sigma} z dx dy$

(B) $\iint_{\Sigma} xz dy dz$, $\iint_{\Sigma} z^2 dy dz$

(C) $\iint_{\Sigma} y dx dz, \iint_{\Sigma} y^2 dx dz$

(D) $\iint_{\Sigma} y^2 dx dz$, $\iint_{\Sigma} 1 dx dz$

4. 二次积分 $\int_{1}^{2} dx \int_{1/x}^{1} y e^{xy} dy$ 的值为

(A) $e^2 - e$ (B) $\frac{1}{2}e^2 - e$

(C) $e^2 + e$

(D) $\frac{1}{2}e^2 + e$

5. 下列命题中正确的是

)

- (A) 设正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛,且 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ 存在,则 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$
- (B) 若正项级数 $\sum_{n=1}^{\infty} a_n$ 发散,必存在 $N \in \mathbb{R}_+$, 当 n > N 时,恒有 $a_n > \frac{1}{n}$
- (C) 设 $f(x) = x \sin x$,则 $\sum_{n=1}^{\infty} (-1)^n f\left(\frac{1}{\sqrt{n}}\right)$ 绝对收敛
- (D) 若级数 $\sum_{n=1}^{\infty} (a_{2n-1} + a_{2n})$ 收敛,则 $\sum_{n=1}^{\infty} a_n$ 收敛

三、 计算题

1. 设函数 f(u,v) 具有连续二阶偏导数, $z = xf\left(xy, \frac{x}{y}\right)$,求 $\frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial x \partial y}$ 。

2. 计算曲面积分 $\iint_{\Sigma} xz dS$, 其中 Σ 是圆锥 $\mathbf{n} z = \sqrt{x^2 + y^2}$ 被柱面 $x^2 + y^2 = 2ax(a > 0)$ 所截部分。

PKSTU

3. 求函数 $z = \frac{x^3}{3} - xy + \frac{y^2}{2} - 2y$ 的极值。

4. 计算曲线积分 $\int_C \sqrt{x^2 + y^2} dx + \left[2x + y \ln(x + \sqrt{x^2 + y^2}) \right] dy$,其中有向曲线 $C: y = x \sin x$,方向: $A(\pi, 0) \to O(0, 0)$ 。

5. 计算第二类曲面积分 $\iint_{\Sigma} x^3 dy dz - 3x^2 y dz dx + (z^3 - 2) dx dy$,其中 Σ 是曲面 $z = x^2 + y^2 (0 \le z \le 1)$ 的下侧。

- 6. (1) 将函数 $f(x) = \frac{\ln(1+x)}{x}$ 展开成麦克劳林级数;
 - (2) 利用(1)中所得级数,求积分 $\int_0^1 f(x) dx$ 的值(注: $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$)。

PKSTU

五、将函数 $f(x) = x - \frac{\pi}{2} + \left| x - \frac{\pi}{2} \right| (0 \le x \le \pi)$ 展成余弦级数。

六、求幂级数 $\sum_{n=2}^{\infty} \frac{1}{n^2 - 1} x^n$ 的和函数,并求 $\sum_{n=2}^{\infty} \frac{1}{(n^2 - 1)2^n}$ 的和。

七、函数 f(x,y) 满足 $\frac{\partial f(x,y)}{\partial x} = (2x+1)e^{2x-y}$,且 f(0,y) = y+1, L_t 是从点 (0,0) 到点 (1,t) 的光滑曲线,计算曲线积分

$$I(t) = \int_{L_t} \frac{\partial f(x, y)}{\partial x} dx + \frac{\partial f(x, y)}{\partial y} dy$$

并求I(t)的最小值。

PKSTU

八、设函数 f(x) 在 $[0,+\infty)$ 上连续,且单调增加有上界。证明级数 $\sum_{n=1}^{\infty} \left[f(n) - \int_{n-1}^{n} f(x) dx \right]$ 收敛。

2020 年高数下期末试题

选择题

1.	函数 $f(x,y)$ 的下面四条	、性质:
Τ.	$\square M J(N, Y) \square I \square \square A$	、上次 •

(1) 在点 (x_0, y_0) 处连续;

(2) 在点 (x_0, y_0) 处两个偏导数连续;

(3) 在点 (x_0, y_0) 处可微;

(4) 在点 (x_0, y_0) 处两个偏导数存在;

则如下表示的推导关系成立的是

(A) $(2) \to (3) \to (1)$

(B) $(3) \to (2) \to (1)$ (C) $(3) \to (4) \to (1)$

(D) $(3) \to (1) \to (4)$

2. 设 f(x,y) 为连续函数,则 $\int_0^{\frac{\pi}{4}} d\theta \int_0^1 f(r\sin\theta, r\cos\theta) rdr$ 等于

(A) $\int_{0}^{\frac{\sqrt{2}}{2}} dx \int_{x}^{\sqrt{1-x^2}} f(x, y) dy$ (B) $\int_{0}^{\frac{\sqrt{2}}{2}} dx \int_{0}^{\sqrt{1-x^2}} f(x, y) dy$

(C) $\int_0^{\frac{\sqrt{2}}{2}} dy \int_y^{\sqrt{1-y^2}} f(x, y) dx$ (D) $\int_0^{\frac{\sqrt{2}}{2}} dy \int_0^{\sqrt{1-y^2}} f(x, y) dx$

3. 设 L 为逆时针方向的圆周 $x^2 + y^2 = a^2$, 则 $\oint \frac{(x+y)dx - (x-y)dy}{x^2 + y^2} = 0$

(A) 0

(B) 2π

(D) -2π

4. 设级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则下列级数中必定收敛的是

()

(A) $\sum_{1}^{+\infty} (-1)^n \frac{u_n}{n}$ (B) $\sum_{1}^{+\infty} u_n^2$ (C) $\sum_{1}^{+\infty} u_{2n-1} - u_{2n}$ (D) $\sum_{1}^{+\infty} u_n - u_{n+1}$

5. 设函数 f(x) 是以 2π 为周期的函数,它在区间 $\left[-\pi,\pi\right]$ 上的表达式 $f(x) = \begin{cases} -x, -\pi \le x \le 0 \\ 0, 0 < x \le \pi \end{cases}$,则 f(x)

的傅里叶级数在 $x=-\pi$ 收敛于

(A) 0

(B) $\frac{\pi}{2}$

(C) $-\frac{\pi}{2}$

(D) π

填空题

1. 设曲面S: z = x + f(y - z), 其中 f 可导,则该曲面在任一点处切平面的法向量 n 与向量 (1,1,1) 的 夹角 θ 为 _____。

3. 设曲面 Σ 是 $z = \sqrt{4-x^2-y^2}$ 的上侧,则 $\iint_{\Sigma} xydydz + xdzdx + x^2dxdy = ______$ 。

5. 幂级数 $\sum_{n=0}^{+\infty} \frac{1}{n!} x^{3n+4}$ 的和函数 S(x) 为 ________。

三、 计算题

1. 设 u = f(x, y, z), $\varphi(x^2, e^y, z) = 0$, $y = \sin x$, 其中 f, φ 都具有一阶连续偏导数,且 $\frac{\partial \varphi}{\partial z} \neq 0$,求 $\frac{du}{dx}$ 。

2. 求函数 $f(x,y) = x^2 + 2y^2 - x^2y^2$ 在区域 $D = \{(x,y) | x^2 + y^2 \le 4, y \ge 0\}$ 上的最大值与最小值。

PKSTU

3. 设n为曲线 $\begin{cases} x^2 + y^2 + z^2 = 6^2 \\ x + y + z = 0 \end{cases}$ 在点(1,-2,1)处的单位切向量,且与OZ轴正向夹角呈锐角,求函数

 $f(x, y, z) = \ln(x^2 + y^2 + z^2)$ 在点(0,1,2)处沿向量n的方向导数。

4. 设是 Ω 是曲面 $z = \sqrt{x^2 + y^2}$ 与 $z = 2 - x^2 - y^2$ 所围成的立体,求 Ω 的体积V和表面积S。

5. 计算曲线积分 $\int_L (2xy^3 - y^2\cos x)dx + (1 - 2y\sin x + 3x^2y^2)dy$,其中 L 为抛物线 $2x = \pi y^2$ 从点 (0,0) 到点 $(\frac{\pi}{2},1)$ 的一段弧。

6. 设 S 是半空间 x > 0 中任意有向封闭曲面,函数 f(x) 在 $(0, +\infty)$ 内存在连续的一阶导数,满足 $\lim_{x \to 0^+} f(x) = 1 , \quad \mathbb{X} \oint_S x f(x) dy \wedge dz - xy f(x) dz \wedge dx - e^{2x} z dx \wedge dy = 0 , \quad \text{求} f(x) .$

PKSTU

7. 计算三重积分 $\iiint_{(V)} (\frac{x}{a} + \frac{y}{b} + \frac{z}{c})^2 dV$,其中 (V) 为球体 $x^2 + y^2 + z^2 \le R^2$, a,b,c 为正数 。

四、设函数
$$f(x) = \begin{cases} \frac{1+x^2}{x} \arctan x, x \neq 0 \\ 1, x = 0 \end{cases}$$

- (1) 将函数 f(x) 展开为 x 的幂级数;
- (2) 求级数 $\sum_{n=1}^{+\infty} \frac{(-1)^n}{1-4n^2}$ 的和。

五、设 f(x) 在 $\left[-\pi,\pi\right]$ 上具有二阶连续导数,且 $f(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos nx$,其中 a_n (n = 0,1,2...) 是函数

f(x)的傅里叶系数,求证: $\sum_{n=0}^{+\infty} a_n$ 绝对收敛。

2019 年高等数学下册期末试题

一、填空题 (每小题 3 分, 共 15 分)

- 1. 函数 $u = 2xy z^2$ 在点 (2, -1, 1) 处沿 I = (1, 2, -2) 的方向导数是_____
- 2. 级数 $\sum_{n=2}^{\infty} \frac{\ln n}{2^n} (x+1)^n$ 的收敛域是_____.
- 3. 曲面 $z = x^2 + y^2 1$ 在点 $M_0(2,1,4)$ 处的切平面方程为______.
- 4. 设曲线 L 是从点 O(0,0,0) 到 A(1,2,2) 的直线段,则对弧长的曲线积分 $\int\limits_{L} x \mathrm{e}^{yz} \, \mathrm{d}s =$ ______.
- 5. $\[\[\] \mathcal{E} f(x) = \begin{cases} x, & 0 \le x \le \frac{1}{2}, \\ 2 2x, \frac{1}{2} < x < 1 \end{cases}, S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\pi x (-\infty < x < +\infty), \[\] \[\]$

二、计算题 (每小题 6 分, 共 18 分)

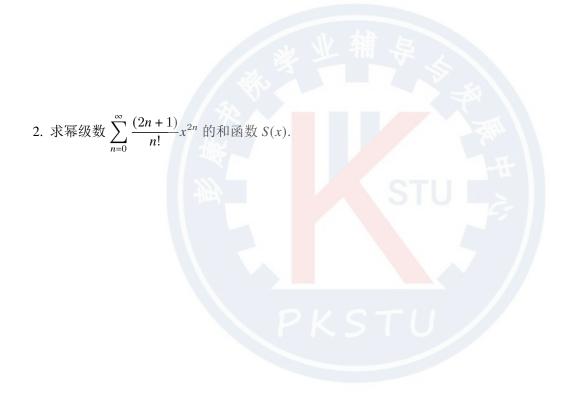
1. 设函数 u = f(x, y, z), f 具有连续的二阶偏导数, 且 $z = e^x \sin y$, 求 $\frac{\partial u}{\partial x}$, $\frac{\partial^2 u}{\partial x \partial y}$.

2. 计算 $\int_C -y^2 dx + x dy + z^2 dz$, 其中曲线 C 是平面 y + z = 4 与柱面 $x^2 + y^2 = 2y$ 的交线, 且从 z 轴正向往下看是 逆时针方向.

3. 计算曲面积分 $\iint\limits_{\Sigma} \left(x^2+y^2\right) \mathrm{d}S$, 其中 Σ 是锥面 $z=\sqrt{x^2+y^2}, 0 \leq z \leq 2$ 部分.

三、计算题 (每小题 7分, 共 21分)

1. 求曲面 $z=x^2+y^2$ 与圆锥面 $z=2-\sqrt{x^2+y^2}$ 所围空间闭区域 Ω 的体积.



3. 计算
$$\displaystyle\iint\limits_{\Omega} (2\sin y + z) \mathrm{d}V,$$
其中 $\Omega = \left\{ (x,y,z) \mid x^2 + y^2 + z^2 \leq 2z, z \geq \sqrt{x^2 + y^2} \right\}.$

四、解答题 (每小题 8 分, 共 32 分)

1. 求曲线积分
$$\int_L \frac{-y \, dx + x \, dy}{x^2 + y^2}$$
, 其中 L 为摆线 $\begin{cases} x = t - \sin t - \pi, \\ y = 1 - \cos t \end{cases}$ 由 $t = 0$ 到 $t = 2\pi$ 的一段.

2. 求椭圆 $\begin{cases} 5x^2 - 6xy + 5y^2 = 4 \\ z = 0 \end{cases}$ 上的点到点 M(0,0,2) 的最长距离和最短距离.

PKSTU

3. 求向量场 $\vec{A}=(2x+z)\mathbf{i}+y^2\mathbf{j}+z\mathbf{k}$ 通过抛物面 $\Sigma:z=x^2+y^2(0\leq z\leq 1)$ 下侧的通量.

4. 将函数 $f(x) = \sin \frac{x}{2} (-\pi \le x \le \pi)$ 展开成傅里叶级数.

五、(8分)将 $f(x) = (1+x)\ln(1+x)$ 展开成 x 的幂级数,并求 $\sum_{n=2}^{\infty} \frac{(-1)^n}{n(n-1)}$ 的和.

六、(6分) 设平面区域 $D = \{(x,y) \mid 0 \le x \le \pi, 0 \le y \le \pi\}$, L 为 D 的边界正向. 证明: $\int_{L} x e^{\sin y} dy - y e^{-\sin x} dx \ge \frac{5}{2} \pi^{2}$.

2018 年高数下期末试题

-、单选题

设函数 f(x,y) 在点 $P(x_0,y_0)$ 处的某个领域内有定义,则下列说法正确的是(

B. 若 f(x,y) 在点 P 处连续,则 f(x,y) 在该点的偏导数一定存在

C. 若 f(x,y) 在点 P 处有极限,则 f(x,y) 在该点一定连续

D. 若 f(x,y) 在点 P 处可微,则 f(x,y) 在该点连续且偏导数一定存在

2. 若 f(x,y) 在 D: $a \le x \le b, c \le y \le d$ 上有二阶连续偏导数,则 $\iint_{D} \frac{\partial f(x,y)}{\partial x \partial y} dx dy = 0$

A. f(a,d) - f(b,d) - f(b,c) + f(a,c)

B. f(b,d) - f(a,d) - f(b,c) + f(a,c)

C. f(a,d) - f(b,d) - f(a,c) + f(b,c)

3. 若 L 是球面 $x^2 + y^2 + z^2 = 4$ 与平面 x + y + z = 0 的交线,则 $I = \iint_L (x+1)^2 ds = (x+1)^2 ds$

A. $\frac{28}{2}\pi$

Β. 8π

C. $\frac{19}{3}\pi$

D. 12π

4. 微分方程 $y'' + 3y' + 2y = (ax + b)e^{-x}$ 的特解形式为(

A. $y = Axe^{-x}$

B. $y = (Ax + B)e^{-x}$ C. $y = (Ax + B)xe^{-x}$ D. $y = Ax^2e^{-x}$

5. 设 f(x) 为连续函数, $F(t) = \int_1^t dy \int_y^t f(x) dx$, 则 F'(2) = (

A. 2f(2)

B. f(2)

C. -f(2)

D. 0

二、计算题

1. 求曲面 $e^{z} - z + xy = 3$ 在点(2,1,0)处的切平面方程和法线方程.

2. 求密度为 1 的抛物体V: $x^2 + y^2 \le z \le 1$ 绕 z 轴的转动惯量.

3. 设S为上半球面 $x^2 + y^2 + z^2 = 4, z \ge 0$, 计算 $\iint_{(y)} (x + y + z) dS$.

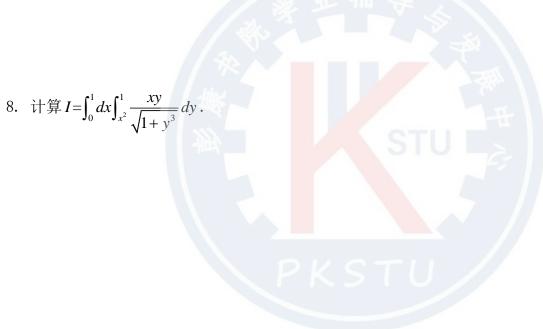
4. 计算 $I = \int_L (y^2 + \sin^2(x+y)) dx + (x^2 - \cos^2(x+y)) dy$, 其中 L 为曲线 $y = \sqrt{1-x^2}$ 从上点 A(1,0) 到 B(0,1) 的一段弧.

PKSTU

5. 计算积分 $I=\iint_{C}zdx+xdy+ydz$,其中 C 为 x+y+z=1 被三个坐标面所截的三角形的边界,方向与三角形上侧的法向量构成右手法则.

6. 设 $f(x, y, z) = \ln(x^2 + y^2 + z^2)$, 计算 $\operatorname{div}[\operatorname{grad} f(x, y, z)]$ 和 $\operatorname{rot}[\operatorname{grad} f(x, y, z)]$.

7. 已知 $y_1 = x$, $y_2 = x + e^x$, $y_3 = 1 + x + e^x$ 是 $y'' + a_1(x)y' + a_2(x)y = Q(x)$ 的解,试求此方程的通解.



三、解答题

1. 讨论函数 $f(x,y) = \begin{cases} xy \arctan \frac{1}{\sqrt{x^2 + y^2}} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$ 在点 (0,0) 处的连续性、偏导数存在性、可微性.

2. 在椭球面 $2x^2+2y^2+z^2=1$ 上求一点 P ,使得函数 $u=x^2+y^2+z^2$ 在点 P 沿方向 n=(1,-1,0) 的方向导数最大,并求此方向导数的最大值.

3. 计算 $I = \iint_{(s)} (x - y + z) dy \wedge dz + (y - z + x) dz \wedge dx + (z^2 - x + y) dx \wedge dy$, 其中 S 为曲面 $x^2 + y^2 + z^2 = R^2$ 与 $x^2 + y^2 + (z - R)^2 = R^2$ 所围立体表面的外侧.

4. 求微分方程 $x'' + 2x' + 2x = te^{-t} \cos t$ 的通<mark>解</mark>.

5. 设 L 是不经过点 (2,0), (-2,0) 的分段光滑的简单正向闭曲线,试就 L 的不同情形计算曲线积分

$$I = \iint_{L} \left[\frac{y}{(2-x)^{2} + y^{2}} + \frac{y}{(2+x)^{2} + y^{2}} \right] dx + \left[\frac{2-x}{(2-x)^{2} + y^{2}} - \frac{2+x}{(2+x)^{2} + y^{2}} \right] dy$$

2017 年高数下期末试题

一、计算题

1. 求 $u = 4x^2 + y^2 + z^2$ 在点M(1,0,2)处的梯度及最大方向导数.

2. 求微分方程 y''' - y'' + 2y' - 2y = 0 的通解.

3. 设 $u = f(t), t = \varphi(xy, x)$, 其中f, φ 具有连续的二阶导数及偏导数, 求 $\frac{\partial u}{\partial x}, \frac{\partial^2 u}{\partial x \partial y}$.

4. 求曲线 $\begin{cases} x = t \\ y = -t^2 与 平面 x + 2y + z = 4 平 行 的 切 线 方程. \\ z = t^3 \end{cases}$

5. 求函数 $f(x, y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ 的所有极值.

6. 计算累次积分 $I = \int_0^1 dx \int_x^1 x^2 e^{-y^2} dy$.

7. 计算二重积分
$$I = \iint_D (xy + |y|) dx dy$$
, 其中 $D = \{(x, y) : |x| + |y| \le 1\}$.

8. 计算曲面积分
$$I = \iint_{\sum} \frac{x^3}{r^3} dy \wedge dz + \frac{y^3}{r^3} dz \wedge dx + \frac{z^3}{r^3} dx \wedge dy$$
,其中 $r = \sqrt{x^2 + y^2 + z^2}$, \sum : $x^2 + y^2 + z^2 = a^2$ 的外侧.

9. 求第一型曲线积分
$$I = \int_{L} \sqrt{2y^2 + z^2} ds$$
, 其中 $L: \begin{cases} x^2 + y^2 + z^2 = a^2 \\ x - y = 0 \end{cases}$.

10. 求双曲抛物面(马鞍面)z = xy被圆柱面 $x^2 + y^2 = R^2$ 所截下那部分的面积.

PKSTU

二、解答题

1. 讨论
$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$$
 在点 $(0,0)$ 的偏导数存在性、可微性、偏导函数的连续性.

2. 计算第二型曲线积分 $I = \int_L \frac{x-y}{x^2+y^2} dx + \frac{x+y}{x^2+y^2} dy$,其中 L 是从点 A(-a,0) 经上半椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $(y \ge 0)$,到点 B(a,0) 的弧段.

3. 求微分方程 $y'' - 2y' + 2y = e^x \sin x$ 满足 y(0) = 1, y'(0) = 1 的特解.

- 4. (学习高数I的同学做(1), 其余的学生做(2))
- (1) 求解微分方程组 $\frac{d\vec{x}}{dt} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} \vec{x}$.
- (2) 设曲线积分 $\int_{(C)} [f''(x)+9f(x)+2x^2-5x+1]ydx+2f'(x)dy$ 与路径无关,求 f(x).

5. 计算曲线积分 $\int_{(C)} (y^2+z^2)dx+(z^2+x^2)dy+(x^2+y^2)dz$,其中曲线 (C) 为球面 $x^2+y^2+z^2=4x$ 与柱面 $x^2+y^2=2x$ 的交线,其方向为从 oz 轴正向看进去为逆时针方向 $(z\geq 0)$.

2016 年高数下期末试题

一、填空题

1. 设函数 f(x,y)满足 $\frac{\partial f}{\partial x} = x^2 + y + 1$, $\frac{\partial f}{\partial y} = ax + y^2 + 2$,则 $a = \underline{\qquad}$

2. 设三元函数 $f(x, y, z) = \int_{0}^{x+y+z} \cos^{2}(t^{2}) dt$,则 $df|_{(1,0,-1)} = \underline{\hspace{1cm}}$

3. 设 $f(x) = \int_0^1 e^{\frac{y^2}{2}} dy$,则 $\int_0^1 f(x) dx =$ ______.

4. 函数 z = 3x + 4y 在条件 $x^2 + y^2 = 1$ 下的最大值为______.

5. 微分方程 $xdy + (y - \sin x)dx = 0$ 满足 $y|_{x=\pi} = 1$ 的特解 y =______

二、单选题

1. 设函数 f(x, y) 在点 (x_0, y_0) 不可微,则必有()

A. f(x, y) 在点 (x_0, y_0) 不连续

B. f(x, y) 在点 (x_0, y_0) 的两个偏导数<mark>不存</mark>在

C. f(x,y)在点 (x_0,y_0) 的两个偏导数<mark>至少</mark>有一个不连续

D. f(x,y)在点 (x_0,y_0) 沿某个方向的<mark>方向</mark>导数<mark>不存</mark>在

2. 设函数 f(x,y) 在有界闭区域 D 上连续, 在 D 内偏导数存在. 若 f(x,y) 在 D 的边界上恒为零,且满

足等式 $\frac{\partial f(x,y)}{\partial x} + 2\frac{\partial f(x,y)}{\partial y} = -f(x,y)$,则f(x,y)在D上(

A. 存在非零的最大值

B. 存在非零的最小值

C. 只在边界上取得最大值和最小值

D. 能在边界上取得最大值和最小值

3. 设 $I_1 = \iiint\limits_{x^2+v^2+z^2 \le 1} e^{xyz} dv$, $I_2 = \iiint\limits_{|x| \le 1, |y| \le 1, |z| \le 1} e^{xyz} dv$, $I_3 = \iiint\limits_{|x|+|y|+|z| \le 1} e^{xyz} dv$, 则(

4. 质点在变力 $\overline{F} = \{P(x,y),0\}$ 的作用下沿平面有向曲线 L 移动,则该力所做的功为(

A. 0

B. $\int_{L} P(x, y) dx$ C. $\int_{L} P(x, y) dy$ D. $\int_{L} P(x, y) ds$

5. 设 L 是曲线 $x^2 + y^2 = a^2$, 则曲线积分 $\int_I (x+y)^2 ds$ 为(

A. a^2

B. a^3

C. $2\pi a^{3}$

D. πa^4

三、简答题

1. 设函数 $z = f(xy, \sin y)$, 其中 f 具有二阶连续的偏导数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.

2. 求曲线 $\begin{cases} 3x^2 + 2y^2 + 3z^2 = 12 \\ z = x \end{cases}$ 在点 $(1, \sqrt{3}, 1)$ 处的切线与法平面方程.

3. 求 $\iint_D \frac{x \cos y}{y} dx dy$, 其中 D 是由曲线 $y = x^2 (x \ge 0)$ 和直线 x = 0, y = 4 围成的平面区域.

PKSTU

4. 求 $\iiint \sqrt{x^2 + y^2} dv$, 其中 Ω 是由曲面 $z^2 = x^2 + y^2$, z = 1与z = 2所围成的区域.

5. 求函数 $f(x, y)=2x^2-3xy+2y^2-x+2y$ 的极值.

6. 计算曲线积分 $\int_L (y + \frac{e^y}{x}) dx + e^y \ln x dy$,其中 L 为平面曲线 $x = 1 + \sqrt{2y - y^2}$ 上从点 (1,0) 到点 (2,1) 的一段有向弧段.

(1) 求解微分方程组 $\frac{dx}{dt} = Ax$ 的通解,其中 $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

(2) 求方程 $y'' + 2y' + y = 2xe^{-x}$ 的通解.

- 8. 设三元函数 P, Q, R在单连通区域 Ω 内有一阶连续偏导数, Γ 是 Ω 内的简单曲线.
- (1) 写出曲线积分 $I = \int_{\Gamma} P dx + Q dy + R dz$ 与路径无关的一个充分条件.

(2) 计算积分 $I = \int_{\Gamma} (y+z)dx + (z+x)dy + (x+y)dz$,其中 Γ : $x = a\cos t$, $y = a\sin t$, z = t 上从点 (a,0,0) 到点 $(-a,0,\pi)$ 的一段.

9. 计算曲面积分 $I = \iint_S \frac{x dy dz + y dz dx + z dx dy}{\sqrt{(x^2 + y^2 + z^2)^3}}$, 其中曲面 S 为: $1 - \frac{z}{7} = \frac{(x-2)^2}{25} + \frac{(y-1)^2}{16} (z \ge 0)$ 的上侧.

3 E

-、单选题

1. 设
$$f(x,y) = \frac{2x^2}{x^2 + y^2}$$
,则 $f(x,y)$ 在 (0,0) 处的二重极限 ()

- A. 等于 0
- B. 等于1
- C. 等于 2

D. 不存在

2. 设曲面
$$S: x^2 + y^2 + z^2 = R^2 (z \ge 0)$$
, 取上侧, $S_1 为 S$ 位于第一卦限部分,则有()

A. $\iint_{S} x dS = 4 \iint_{S} x dS$

C. $\iint_{S} x dy dz = 4 \iint_{S} x dy dz$

B. $\iint_{S} ydS = 4 \iint_{S_{1}} ydS$ D. $\iint_{S} ydydz = 4 \iint_{S} ydydz$

3. 设曲线
$$C: x^2 + y^2 = 1$$
,取逆时针方向,则 $\iint_C (y + \frac{y^3}{6}) dx + (2x - \frac{x^3}{3}) dy = ($

- C. $\frac{\pi}{2}$ D. $\frac{5\pi}{8}$

4.
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
, 则 $f(x,y)$ 在 $(0,0)$ 点沿方向 $\vec{l} = (1,\sqrt{3})$ 的方向导数 $\frac{\partial f}{\partial \vec{l}}\Big|_{(0,0)} = ($

A. 0

- B. $\frac{3}{8}$ C. $\frac{3\sqrt{3}}{8}$

二、填空题

2. 空间曲线
$$\begin{cases} z = x^2 + 4y^2 \\ y = \frac{1}{2} \end{cases}$$
 在点 $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}, \frac{7}{4}\right)$ 处的切线与 Ox 的夹角 $\alpha = \underline{\hspace{1cm}}$.

3. 二次积分
$$\int_0^1 dx \int_x^{\sqrt{x}} \frac{\cos y}{y} dy =$$
______.

4. 设空间曲线
$$C$$
 为
$$\begin{cases} x^2 + y^2 + z^2 = R^2 \\ x + y + z = \frac{3R}{2} \end{cases}$$
 , 其中常数 $R > 0$, 则 $\iint_C y ds = \underline{\qquad}$.

三、解答题

1. 设函数
$$f(u,v)$$
 具有一阶连续偏导数, $z = \int_0^{xy} f(e^t,t)dt$, 求 $\frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial x \partial y}$.

2. 设 z = z(x, y) 是由方程 $e^z - 2x + yz = e$ 在 (0,0,1) 点的某领域内确定的隐函数,求全微分 $dz|_{(0,0)}$.

- 3. (学工科分析者做(1),其余做(2))
- (1) 求解微分方程组: $\frac{dx}{dt} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} x$.
- (2) 求一个以四个函数 $y_1 = e^x$, $y_2 = 2xe^x$, $y_3 = \cos 2x$, $y_4 = 3\sin 2x$ 为特解的齐次线性微分方程,并求方程的通解.

4. 求微分方程 $y'' - 5y' + 6y = 2xe^{2x}$ 的通解.

5.
$$I = \iint_{D} \sqrt{|y - x^2|} dxdy$$
, $\not= D = \{(x, y) | -1 \le x \le 1, 0 \le y \le 1\}$.

6. 设 Σ 是旋转抛物面 $z=1-x^2-y^2(z\geq 0)$,取上侧,计算第二类曲面积分:

$$I = \iint_{\Sigma} 2x^3 dy dz + 2y^3 dz dx + 3(z^2 - 1) dx dy$$

7. 设 f(x) 在 (0,+∞) 上具有连续的导数,L 是由点 $A(3,\frac{2}{3})$ 到点 B(1,2) 的直线段,求:

$$\int_{L} \left[\frac{x}{y^{2}} - xf(xy) \right] dy - \left[\frac{1}{y} + yf(xy) \right] dx$$

9. $\[\mathcal{C}_{0} f(x,y) = \begin{cases} \frac{|xy|}{x^2 + y^2} \sin(x^2 + y^2) & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases} \]$, 证明: 函数 f(x,y) 在点 (0,0) 处可微.

$$I = \iint \left(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} \right) dx dy = \frac{\pi}{2e}$$

PKSTL

一、计算题

1. 在曲面 $z = \frac{x^2}{2} + y^2$ 上求一点,使曲面在该点处的切平面平行与平面 2x + 2y - z = 0.

2. 设f 是连续函数,交换积分次序: $\int_{-6}^{2} dx \int_{\frac{1}{4}x^2-1}^{2-x} f(x,y) dy$.

3. 求微分方程 $x'' + 3x' + 2x = e^{-2t}$ 的通解.

4. 己知曲线 $L: y = x^2 (0 \le x \le 1)$ 上任意一点处的线密度在数值上与该点的横坐标相同,求曲线的质量.

5. (学工科分析者做(1), 其余做(2))

(1) 验证微分方程组
$$\frac{d}{dt} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \cos^2 t & \frac{1}{2}\sin 2t - 1 \\ \frac{1}{2}\sin 2t + 1 & \sin^2 t \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 通解为
$$\vec{x} = C_1 \begin{pmatrix} e^t \cos t \\ e^t \sin t \end{pmatrix} + C_2 \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix}, t \in R.$$

(2) 验证 $y_1 = e^x$, $y_2 = e^x \ln |x|$ 是微分方程 xy'' - (2x-1)y' + (x-1)y = 0 的解,并求其通解.

6. 计算三重积分 $\iint_V z dv$, 其中 V 是由不等式 $\sqrt{x^2+y^2} \le z \le \sqrt{2-x^2-y^2}$ 确定的空间区域.

7. 求向量场 $\vec{A} = \{z + x^2, x, z^2 + 3y\}$ 穿过曲面 Σ : $z = x^2 + y^2 (0 \le z \le 1)$ 下侧的通量.

8. 计算第一型曲面积分 $\iint_{\Sigma} (x^2 + y^2) dS$,其中 Σ 为曲面 $z = \sqrt{x^2 + y^2}$ 介于 $0 \le z \le 1$ 之间的部分.

9. 计算第二型线积分 $\int_{L} y e^{y^2} dx + (x e^{y^2} + 2x y^2 e^{y^2}) dy$,其中 L 为 $y = \sqrt[3]{x}$ 上从 O(0,0) 到 A(1,1) 的曲线段.

- 11. (学工科分析者做(1),其余做(2))
- (1) 求线性微分方程组 $\frac{d\bar{x}}{dt} = A\bar{x}$ 的通解,其中 $A = \begin{pmatrix} 8 & 4 & -1 \\ 4 & -7 & 4 \\ -1 & 4 & 8 \end{pmatrix}$.
- (2)已知函数 $y=e^{2x}+(x+1)e^x$ 是二阶常系数非齐次线性微分方程 $y''+ay'+by=ce^x$ 的一个特解,试确定 a,b,c,并求该方程的通解.

AND STUE

12. 设 y = f(x,t),而 t 是由方程 F(x,y,t) = 0 所确定的 x,y 的函数,其中 f,F 都具有一阶连续偏导数,求 $\frac{dy}{dx}$.

13. 计算 $\iint_{(D)} x[1+y\sin^2(x^2+y^2)]d\sigma$, 其中 (D) 是由 $y=x^3, y=1, x=-1$ 所围成的区域.

- 14. 设函数 $\varphi(y)$, $\psi(y)$ 具有连续导数,对平面内的任意分段光滑简单闭曲线C,有曲线积分 $\iint_C 2[x\varphi(y)+\psi(y)]dx + [x^2\psi(y)+2xy^2+2x\varphi(y)]dy = 0$,求:
- (1) 求满足条件 $\varphi(0) = -2, \psi(0) = 0$ 的函数 $\varphi(y), \psi(y)$.

(2) 计算 $\int_{(1,1)}^{(0,0)} 2[x\varphi(y) + \psi(y)]dx + [x^2\psi(y) + 2xy^2 + 2x\varphi(y)]dy$.

- (1) 计算 $A = \iint_D |xy-1| dxdy$.

(2) 设 f(x,y)在 D 上连续,且 $\iint_D f(x,y) dx dy = 0$, $\iint_D xy f(x,y) dx dy = 1$, 证明存在 $(\xi,\eta) \in D$,使 $|f(\xi,\eta)| \ge \frac{1}{A}.$

1. 求函数 $u = x^2 + y^2 + z^4 - 3xz$ 在点 $M_0(1,1,1)$ 处 $\vec{l} = (1,2,2)$ 方向的方向导数.

2. 求曲面 $3x^2 + y^2 + z^2 = 16$ 在点M(2,2,0)处的切平面方程.

3. 设函数 z = z(x, y) 由方程 $z^2y - xz^3 = 1$ 所确定,求 $\frac{\partial z}{\partial x}$ (1.2.1)

4. 求微分方程 y'' - 2y' + 5y = 0 的通解.

5. 设 L 是从点 A(1,0) 到 B(-1,2) 的直线段,计算曲线积分 $\int_L (x+y)ds$.

6. 设 $z = xf(xy, \frac{x}{y})$, 其中 f 具有连续的二阶偏导数,求 $\frac{\partial^2 z}{\partial x \partial y}$.

7. 计算
$$\int_0^1 dx \int_{x^2}^1 \frac{xy}{\sqrt{1+y^3}} dy$$
.

8. 设有一物体,它是由曲面 $z=\sqrt{x^2+y^2}$ 和 $z=\sqrt{8-x^2-y^2}$ 所围成,已知它在任意的点(x,y,z)处的密度 $\rho=z$,求此物体的质量 m.

PKSTU

9. 计算曲线积分 $\int_{(\bar{A}B)} (e^x \sin y + y + 1) dx + (e^x \cos y - x) dy$,其中 $A\hat{B}$ 为曲线 $y = -\sqrt{-x^2 + 8x - 7}$ 从 A(7,0) 到点 B(1,0) 的一段弧.

10. 计算曲面积分 $I = \iint_{\Sigma} x \cos^2(1+z) dy \Lambda dz + y \sin^2(1+z) dz \Lambda dx + 4(z+1) dx \Lambda dy$,其中 Σ 是下半球面 $z = -\sqrt{1-x^2-y^2}$ 的上侧.

- 11. (学工科分析者作(1),其余作(2))
- (1) 求线性微分方程组 $\frac{d\vec{x}}{dt} = A\vec{x}$ 的通解, 其中 $A = \begin{bmatrix} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 1 \end{bmatrix}$.
- (2) 设函数 u 的全微分 $du = [3f(x) + e^x]ydx + [2f'(x) + f(x)]dy$, 其中 $f(x) \in C^{(2)}$,且 f(0) = 1, $f'(0) = \frac{1}{5}$,求 f(x).

12. 讨论函数 $f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$, 在点 (0,0) 的连续性、可导性、可微性.

13. 设 f(x,y)连续,且 $f(x,y) = \sqrt{1-x^2-y^2} - \frac{1}{\pi} \iint_D f(x,y) dx dy$,其中 $D \neq x^2 + y^2 \leq 1$,求 f(x,y).

14. 设对任意的分片光滑有向封闭曲面 S,都有:

$$\iint_{S} (y+1)f'(x)dy \Lambda dz + (y-y^{2})f(x)dz \Lambda dx + [zyf'(x)-2ze^{x}]dx \Lambda dy = 0$$

其中函数 f(x) 在 $(-\infty, +\infty)$ 内具有连续的二阶导数, 求 f(x).

15. 证明: $\oint_L [xf(y) + x^2] dy - [\frac{y}{f(x)} + 2y^2] dx \ge 2\pi + 6a\pi$, 其中 L 为圆周曲线 $(x-a)^2 + (y-a)^2 = 1$, (a > 0)的正向,f(x)连续取正值.

一、计算题

1. 求曲线 $\vec{r}(t) = (\cos t, \sin t, \tan \frac{t}{2})$ 在点 (0,1,1) 处的切线方程.

2. 求曲面 $z - e^z + 2xy = 3$ 在点 (1,2,0) 处的切平面方程.

3. 设f 是连续函数,交换下列积分次序 $\int_{1}^{2} dx \int_{2-x}^{\sqrt{2x-x^2}} f(x, y) dy$.

4. 求微分方程 $\ddot{x} + 4\dot{x} + 5x = 0$ 的通解.

5. 设 L 为圆周 $x^2+y^2=ax$, (a>0) , 计算线积分 $\int_{L} \sqrt{x^2+y^2} \mathrm{d}s$.

6. 已知 $z = f(2x - y, y \sin x)$, f(u, v) 具有连续二阶偏导数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.

6. 计算
$$\iint_D \sin \frac{x}{y} dxdy$$
, 其中 D 是由 $x = 0$, $y = \frac{\pi}{2}$, $y = \pi$ 及 $x = y^2$ 所围的平面区域.

8. 设有一物体, 由曲面 $z = \sqrt{4 - x^2 - y^2}$ 与 $z = \frac{1}{3}(x^2 + y^2)$ 所围成, 已知它在任意点 (x, y, z) 处的密度 $\mu = z$,求此物体的质量.

PKSTU

9. 计算曲线积分 $\int_L e^x [\cos y dx + (y - \sin y) dy]$, 其中 $L \stackrel{\cdot}{=} y = \sin x \stackrel{\cdot}{\vee} A(0,0)$ 到点 $B(\pi,0)$ 的弧段.

10. 计算第二型面积分 $\iint_{\Sigma} x dy \Lambda dz + y dz \Lambda dx + (z+1) dx \Lambda dy$,其中 Σ 为曲面 $z=1-x^2-y^2$ 在 xoy 平面上方部分,方向取上侧.

- 11. (学工科分析者作(1),其余作(2))
- (1) 求线性微分方程组 $\frac{d\vec{x}}{dt} = A\vec{x}$ 的通解, 其中 $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$.
- (2) 求微分方程 $\ddot{x}-3\dot{x}+2x=4e^{t}$ 的通解.

PKSTU

12. 计算第一型曲面积分 $\iint_{\Sigma} z dS$, 其中曲面 Σ 是圆锥面 $z = \sqrt{x^2 + y^2}$ 上介于平面 z = 1 于 z = 2 之间的部分.

- 13. 设微分方程 y'' + P(x)y' + Q(x)y = 0
- (1) 证明: 若1+P(x)+Q(x)=0,则方程有一特解 $y=e^x$;若P(x)+xQ(x)=0则方程有一特解y=x.

(2) 根据(1)的结论,求(x-1)y''-xy'+y=0的通解和满足初始条件y(0)=2,y'(0)=1的特解.

(3) 求 (x-1)y'' - xy' + y = 1 满足初始条件 $\lim_{x \to 0} \frac{\ln[y(x)-1]}{x} = -1$ 的特解.

14. 求函数 u = x + y + z, 在条件 $x^2 + y^2 + z^2 - 2ax - 2ay - 2az + 2a^2 = 0$ (a > 0) 下的最小值,并证明: **若** 曲面 A: $x^2 + y^2 + z^2 = 2ax + 2ay + 2az - 2a^2$, $\iint_{(A)} (x + y + z + 3a)^3 dS \ge 108\pi a^5$.